From 1 - 10 / 116
  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • Boring by the Alice Springs Works Department and by Webb Bros. of Mt. Riddock Station showed that subterranean water supplies in the schists and gneisses in this area are usually small in quantity and that the water is brackish. The best chances of obtaining water for the mining fields seems to lie in sinking relatively shallow wells on the creeks and depressions running northward from the Harts Range. These depressions are believed to contain from 30 to 60 ft. of alluvium. Eight possible sites for wells were selected, two being within the foothills of the main range and six at a distance of 1.5 to 2 miles from the foothills of the range. Six of these sites are now being tested by a light hand-boring plant. This plant is expected to penetrate the alluvium quickly and wells will be sunk where favourable results are obtained. The sites selected are within easy reach of the following mines: Jenkins' Mine, The Spotted Tiger Mine, B. Rech's (Rex?) Mine, Hit and Miss Mine, Central Mine and Eldorado Mine.

  • This dataset maps the geomorphic habitat environments (facies) for 213 Queensland coastal waterways. This version of the dataset includes 73 newly mapped estuaries, classified as 'Near pristine'. The classification system contains 12 easily identifiable and representative environments: Barrier/back-barrier, Bedrock, Central Basin, Channel, Coral, Flood- and Ebb-tide Delta, Fluvial (bay-head) Delta, Intertidal Flats, Mangrove, Rocky Reef, Saltmarsh/Saltflat, Tidal Sand Banks (and Unassigned). These types represent habitats found across all coastal systems in Australia. Southern and central Great Barrier Reef lagoon coasts have a broad spectrum of river, tide and wave- dominated estuaries.

  • A detailed analysis of aquifer systems in the Broken Hill Managed Aquifer Recharge priority areas has clarified our understanding of key components of the aquifer systems. Of the priority areas examined in detail, the aquifers located in the Darling Floodplain are considered to have the greatest potential for developing Managed Aquifer Recharge (MAR) options and for hosting significant volumes of previously undefined fresh and brackish groundwaters with low levels of allocation, thereby assisting the larger strategic effort aimed at identifying significant water-saving measures for the Darling River system.

  • Geoscience Australia (GA) was invited by Murray-Darling Basin Authority (MDBA) in 2010 to participate in an evaluation of the Intermap IFSAR (Interferometric Synthetic Aperture RADAR) data that was acquired as part of the Murray-Darling Basin Information Infrastructure Project Stage 1 (MDBIIP1) in 2009. This evaluation will feed into the business case for Stage 2 of the project. As part of the evaluation GA undertook the following: 1. A comparison of the IFSAR Digital Surface Model (DSM) and Digital Terrain Model (DTM) with a recent LiDAR acquisition, covering approximately 9000Km2 of the Lower Darling Region. It focused on assessment of the data over various land cover and terrain types and identified opportunities and issues with integrating IFSAR with LiDAR. 2. A comparison of the IFSAR Vegetation Canopy Surface (DSM minus DTM) with the Lower Darling LiDAR Canopy Elevation Model (CEM). 3. A comparison between currently mapped man-made and natural water bodies over the Murray-Darling Basin with the IFSAR derived products (water mask). 4. Application of the National Catchment Boundaries (NCBs) methodology to the IFSAR data and comparison with the delineated watersheds from PBS&J (Intermap's sub-contractor). This report outlines the findings of this evaluation based on the 4 items above MDBA requested.

  • In April 2005, Geoscience Australia (GA) conducted a field survey of the waterbodies of the Torbay catchment drainage system. The Torbay Catchment Group and the Western Australian Department of Environment commissioned this study in order to address critical knowledge gaps in their understanding of the major components of the nutrient budget. In particular, the role of benthic nutrient fluxes, their magnitude, and total benthic nutrient supply to the water column for phytoplankton growth. The waterbodies studied were Torbay inlet, Lake Powell, Marbellup Brook and Lake Manarup. The key findings of this study were: 1. the sediments are a major source of nutrients to the water column of all waterbodies; and 2. denitrification, nitrogen fixation and benthic photosynthesis are critical processes influencing overall water quality.

  • In early autumn 2006 (14th March to 4th April), Geoscience Australia conducted a field survey to investigate the major processes controlling water quality in Wellstead Estuary, Gordon Inlet and Beaufort Inlet. This project aimed to address critical knowledge gaps in understanding the impact of sediment-water interactions on water quality in each estuary, in particular, to identify the major controls on nutrient abundance and availability. The impacts of sediment-water interactions on overall water quality took into account: 1. shallowness of the estuaries and long water residence time; 2. productivity of microbenthic algae; and 3. the type of aquatic plant growth. Recommendations for the future management of these estuaries included: 1. Reducing nitrogen loads from the catchments of Wellstead Estuary and Gordon Inlet, and reducing the phosphorus loads from the catchment of Beaufort inlet; 2. Monitoring the abundance of macroalgae in Wellstead Estuary, the abundance of macrophytes in Gordon Inlet and the water column Chl-a concentrations in Beaufort Inlet.

  • Geoscience Australia conducted a survey of lakebed (benthic) nutrient fluxes in St Georges Basin, November 2003. The objectives were to: 1. determine the nature of nutrient cycling between the sediment and overlying water; and 2. determine the implications of benthic nutrient fluxes for water quality in the estuary. The relevance to management of this work is that it gives an indication of the susceptibility of the estuary to eutrophication from increased nutrient loads from the catchment. The key findings of the study were: - St Georges Basin was mesotrophic to eutrophic at the time of the survey (spring) based on relatively high respiration rates and O2 demand in the sediments measured by in situ benthic chambers. - Respiration rates were linked to phytoplankton biomass (mainly diatoms) where local fluvial discharge of dissolved nutrients created enhanced primary productivity in the water column, which in turn enhanced mineralisation rates. - St Georges Basin had comparatively low denitrification efficiencies (less than 60%). - St Georges Basin is likely to be prone to eutrophication and may have little tolerance for increases in nutrient and organic matter from the catchment due to the low denitrification efficiencies.

  • An area of about 12,000 square miles was mapped in the field seasons 1950-51. It contains four Pre-Cambrian rock groups ranging from Archaeozoic to Uppermost Proterozoic. The main groups in the area, the Mt. Isa and Lawn Hill Groups, are shallow-water geosynclinal sediments involved in a Proterozoic orogeny which resulted in fairly intensive folding along dominantly north-south axes, together with much faulting. The geological features discussed in this report include physiography, topography, stratigraphy, igneous activity, structure, mineral deposits and water supply.