water
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.
-
The Great Artesian Basin Research Priorities Workshop, organised by Geoscience Australia (GA), was held in Canberra on 27 and 28 April 2016. Workshop attendees represented a spectrum of stakeholders including government, policy, management, scientific and technical representatives interested in GAB-related water management. This workshop was aimed at identifying and documenting key science issues and strategies to fill hydrogeological knowledge gaps that will assist federal and state/territory governments in addressing groundwater management issues within the GAB, such as influencing the development of the next Strategic Management Plan for the GAB. This report summarises the findings out of the workshop.
-
Benthic nutrient fluxes from the sediments were measured at three Sites in the Bombah Broadwater of Myall Lakes during the winter (June) of 2000. Surface sediments (0-1 cm) and two cores were collected at each site and processed for measurements of carbon and nitrogen isotopic composition of the OM (organic matter), biomarkers and bulk sediment composition (OM and major cations). Pore waters were extracted from sediments and measured for both organic and inorganic metabolites. Biomarker, benthic flux data and the compositions of inorganic metabolites in pore waters indicated that Redfield OM (organic matter) was predominant in the sediments and mostly diatomaceous and probably responsible for the observed release of nutrients from the sediments to t he overlying waters. Carbon degradation rates in the sediments, during these winter month, varied between 5-47 mmol m-2 d-1 (60-564 µg m-2d-1) and were highest in the muddy sediments (mean = 21.3 +/-12.7 mmol m-2 d-1) as compared to the sandy sediments (mean = 11.6 +/-4.8 mmol m-2 d-1). DIN fluxes were less than those predicted from CO2 fluxes and Redfield stoichiometry and the `missing nitrogen' (subsequently determined by mass spectrometry as N2) was indicative of denitrification in the surface sediments. Rates of denitrification calculated from N2 directly and from `missing N' were similar and up to 5.1 mmol N m-2 d-1. There was no evidence of organic metabolite fluxes although the organic and inorganic metabolite concentrations were similar in the pore waters. Denitrification efficiencies were high (mean = 80 +/- 4%) in the sandy sediments and lower (although there was considerable variability) in the muddy sediments (mean =38% +/- 9%). Most DIP (generally > 70%) liberated to pore waters during OM degradation was not released into overlying waters but remained trapped and enriched in surface sediments. Benthic nutrient fluxes (average DIN/DIP = 131) were preferentially enriched in N compared to the OM (N/P = 16) raining into the sediments. Adjective biophysical processes (not diffusive) dominated the fluxes of metabolites across the sediment -water interface.
-
Geoscience Australia's entry to the ASC2014 SPECTRUM science-art exhibition Title: Seeing Water Through Time Author: Norman Mueller Type: Science Communication image Description: The WOfS, Water Observations from Space, image is a colour-scale of how many times water was detected from the Landsat 5 and 7 satellites over central Australia from 1998 to 2012. The colours range from very low number of times (red) to very high number of times (blue), using a standard rainbow colour scheme (red-orange-yellow-green-blue). This means that red areas are hardly ever wet while blue areas are more permanent water features like lakes. The area covered includes Lake Eyre (at left) Cooper Creek (right of centre) to the Paroo River (bottom right).
-
The Environmental Arttibutes Database is a set of lookup tables supplying attributes describing the natural and anthropogenic characteristics of the stream and catchment environment that was developed by the Australian National University (ANU) in 2011. The data is supplied as part of the supplementary Geofabric products which is associated with the 9 second DEM derived streams and the National Catchment Boundaries based on 250k scale stream network. Please consult the spreadsheet below for details of the attributes and their source data.
-
A PowerPoint presentation showing regional interpretations of data from the Frome airborne electromagnetic survey, presented at a workshop on 30 November 2011 at the University of Adelaide, South Australia
-
This service has been created specifically for display in the National Map and the symbology displayed may not suit other mapping applications. Information included within the service includes the polygon/area locations for surface hydrology, including natural and man-made features such as water courses (including directional flow paths), lakes, dams and other water bodies and marine themes. The data is sourced from Geoscience Australia 250K Topographic data and Surface Hydrology data. The service contains layer scale dependencies.
-
This OGC WMS web service (generated by Geoserver) serves data from the Geoscience Australia Rock Properties database. The database stores the results of measurements of physical properties of rock and regolith specimens, including such properties as mass density, magnetic susceptibility, magnetic remanence and electrical conductivity. The database also records analytical process information such as method and instrument details where possible.
-
Description of FreeGs: a web-enabled database of thermodynamic properties hosted at Geoscience Australia.
-
As a result of abnormal rains in 1950, a considerable body of water has been impounded in Lake George, situated in New South Wales, but only 20 miles north of Canberra, Australian Capital Territory. Local reports claim a depth of water of 30 feet in the Lake and these reports have prompted the Advisory Council of the Australian Capital Territory to investigate the possibility of developing the lake as a recreational resort. As a first step in this investigation the Council has asked the Bureau of Mineral Resources, Geology and Geophysics for an opinion as to how long a considerable body of water may be retained in the lake.