2010
Type of resources
Keywords
Publication year
Scale
Topics
-
An extensive AEM survey recently commissioned by Geoscience Australia involved the use of two separate SkyTEM helicopter airborne electromagnetic (AEM) systems collecting data simultaneously. In order to ensure data consistency between the two systems, we follow the Danish example (conceived by the hydrogeophysics group from Aarhus University) of using a hover test site to calibrate the AEM data to a known reference. Since 2001, Denmark has employed a national test site for all electromagnetic (EM) instruments that are used there, including the SkyTEM system. The Lyngby test-site is recognised as a well-understood site with a well-described layered-earth structure of 5 layers. The accepted electrical structure model of the site acts as the reference model, and all instruments are brought to it in order to produce consistent results from all EM systems. Using a ground-based time-domain electromagnetic (TEM) system which has been calibrated at the Lyngby test site, we take EM measurements at a site selected here in Australia. With sufficient information of the instrument, we produce a layered-earth model that becomes the reference model for the two AEM systems used in the survey. We then bring the SkyTEM systems to the hover site and take soundings at multiple altitudes. From the hover test data and the ground based model, we calculate an optimal time shift and amplitude scale factor to ensure that both systems are able reproduce the accepted reference model. Conductivity sections produced with and without calibration factors show noticeably different profiles.
-
Globally supracrustal sedimentary rocks are known to preferentially precipitate gold between 2400 Ma and 1800 Ma (Goldfarb et al. 2001). The Palaeoproterozoic Tanami and Pine Creek regions of Northern Australia host one world-class gold deposit and many other gold deposits in anomalously iron-rich marine mudstones (Figure 1). New fluid-rock modelling at temperatures between 275 - 350C suggest a strong correlation between gold grade and these Palaeoproterozoic iron-rich, fine-grained sedimentary rocks.
-
Palynological studies of Triassic-Jurassic well sections in the Offshore North Perth Basin have helped to reveal a more complicated geological history than previously recognised. This work is part of a major Geoscience Australia project studying the geological history and petroleum prospectivity of the basin. Seismic and well log interpretations have been combined with the sedimentological data to develop a high resolution sequence stratigraphic framework. This work is heavily reliant on the palynological data to provide the necessary age control, palaeoenvironmental interpretations and well correlations. Abstract continues (no space in field).
-
Australia is the world's ninth largest energy producer and its economic wealth is built on abundant, high quality and diverse energy resources, including oil and gas, coal and uranium. In March 2010 the federal government released a comprehensive and integrated assessment of Australia's non-renewable and renewable energy resources. The assessment covers crude oil, condensate, LPG (Liquefied petroleum gas) and oil shale; conventional gas, coal seam gas, tight gas, shale gas and gas hydrates; as well as coal, uranium and thorium, geothermal, hydro, wind, solar, wave and tidal, and bioenergy. The Australian Energy Resource Assessment (AERA) was undertaken jointly by Geoscience Australia and the Australian Bureau of Agricultural and Resource Economics (ABARE). It documents the current resource base and market, and the outlook to 2030 for each of the energy commodities and is a useful compilation for investors in the Australian petroleum sector.
-
Abstract The Palaeoproterozoic, from 2100 to 1800 Ma, is recognised as the third largest period of orogenic gold mineralization. In contrast to earlier Archean orogenic gold episodes which occur predominantly in greenstone terranes, supracrustal sedimentary rocks became increasingly important as hosts in the Palaeoproterozoic. Unusually iron-rich 1840 Ma marine mudstones in the Tanami region host one world class gold deposit and many other gold deposits. Fluid-rock modelling at 350°C suggest a strong correlation between gold grade and these iron-rich, fine-grained sedimentary rocks and suggest that gold may precipitate in the iron-rich sediments in the first stage of mineralization, before remobilization of the gold further enhances the grade of the deposit. New regional stratigraphic correlations for similar iron-rich rocks to those in the Tanami region are suggested with ~1860 Ma gold-bearing stratigraphy in the Pine Creek region and potentially with ~1860 Ma host rocks in the Tennant region. These Northern Australian Palaeoproterozoic iron-rich sedimentary rocks could be linked globally to similar aged iron-rich and gold-bearing sedimentary rocks in Homestake, U.S., Ghana, West Africa and elsewhere. From about 2400 to 1800 Ma the Palaeoproterozoic is also marked by the occurrence of mainly Superior-style BIF's, which are attributed to the progressive oxygenation of the deep oceans resulting in the global scrubbing of iron from the oceans. The high iron concentrations noted in pre-1800 Ma marine sediments in Northern Australia could also be related to this same process and help explain the anomalous concentration of orogenic Au deposits from 2100 to 1800 Ma.
-
Ongoing developments in geodetic positioning towards greater accuracies with lower latency are now allowing the measurement of the dynamics of the Earth's crust in near real time. However, in the Australian circumstance a sparsity of geodetic infrastructure has limited the application of modern, geodetic science to broader geoscience research programs. Recent enhancements to the Australian geodetic infrastructure, through the AuScope initiative, offer opportunities for research into refinement of geodetic accuracies, as well as their application to measuring crustal deformation.
-
Preliminary zircon data and tectonic framework for the Thomson Orogen, northwestern NSW
-
Magnetotelluric data were acquired for Geoscience Australia by contract along the north-south 08GA-C1-Curnamona seismic traverse to the east of Lake Frome from November 2008 to January 2009 as part of the Australian Government's energy security initiative. 25 sites were spaced an average of 10 km apart, and five-component broadband data were recorded with a frequency bandwidth of 0.001 Hz to 250 Hz and dipole lengths of 100 m. Apparent resistivity and phase plots are presented, along with dimensional analyses of the data based on rotational invariants, the representation of the data by the phase tensor, and Parkinson arrows. These analyses provide insight into the complexity of the Earth conductivity giving rise to the MT responses and are a useful precursor to modelling.
-
Welcome to Australia's Energy and Mineral Resources Showcase: This CD contains copies of the Showcase presentations and supporting material. If the application does not start automatically, please open 'index.hta' or 'index' to start it manually.
-
Old, Flat and Red: the Origins of the Australian Landscape Colin Pain, Geoscience Australia, Lisa Worrall, Geoscience Australia, and Brad Pillans, Research School of Earth Science, Australian National University