From 1 - 10 / 14418
  • This dataset contains species identifications of micro-benthic worms collected during survey SOL4934 (R.V. Solander, 27 August - 24 September, 2009). Animals were collected from the Joseph Bonaparte Gulf with a Smith-McIntyre grab. Specimens were lodged at Northern Territory Museum on the 1 February 2010. Species-level identifications were undertaken by Chris Glasby at the Northern Territory Museum and were delivered to Geoscience Australia on the 7 March 2011. See GA Record 2010/09 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Magnetic Anomaly Map of Australia, Seventh Edition, 2019 TMI Greyscale image is a greyscale image of the TMI grid of the Magnetic Anomaly Map of Australia, Seventh Edition, 2019. The 2019 Total magnetic Intensity (TMI) grid of Australia has a grid cell size of ~3 seconds of arc (approximately 80 m). This grid only includes airborne-derived TMI data for onshore and near-offshore continental areas. Since the sixth edition was released in 2015, data from 234 new surveys have been added to the database, acquired mainly by the State and Territory Geological Surveys. The new grid was derived from a re-levelling of the national magnetic grid database. The survey grids were levelled to each other, and to the Australia Wide Airborne Geophysical Survey (AWAGS), which serves as a baseline to constrain long wavelengths in the final grid. It is estimated that 33 500 000 line-kilometres of survey data were acquired to produce the 2019 grid data, about 2 000 000 line-kilometres more than for the previous edition. The grid used to produce this greyscale image has a cell size of 0.00083 degrees (approximately 80m). This greyscale image shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The image can also be used to locate structural features such as dykes.

  • This resource includes bathymetry data acquired during the Southern Depths of the Great Barrier Reef survey using Kongsberg EM302 and EM710 multibeam sonar systems. The Southern Great Barrier Reef Shelf Bathymetry survey (FK201122/GA4867); also known as Ice Age Geology of the Great Barrier Reef survey; was led by Queensland University of Technology aboard the Schmidt Ocean Institute's research vessel Falkor from the 22nd of November to the 21st of December 2020. The primary objective of the expedition was to explore ancient undersea features that formed during the last Ice Age, when sea level was around 125 m lower than it is today. While once an exposed part of the Australian coast, these shelf areas were submerged as Earth’s glaciers and ice sheets melted and sea level rose, flooding Australia’s continental shelf. Another objective was to find the southern extent of an older limestone platform that may represent the approximately 20 million-year-old base upon which the present Great Barrier Reef has grown. This V1 dataset contains two 64m resolution 32-bit floating point geotiff files of the Southern Great Barrier Reef Shelf Bathymetry survey area, derived from the processed EM302 and EM710 bathymetry data, using CARIS HIPS and SIPS software. This dataset is not to be used for navigational purposes. This dataset is published with the permission of the CEO, Geoscience Australia.

  • The coverage of this dataset is over the Taree region . The C3 LAS data set contains point data in LAS 1.2 format sourced from a LiDAR ( Light Detection and Ranging ) from an ALS50 ( Airborne Laser Scanner ) sensor . The processed data has been manually edited to achieve LPI classification level 3 whereby the ground class contains minimal non-ground points such as vegetation , water , bridges , temporary features , jetties etc . Purpose: To provide fit-for-purpose elevation data for use in applications related to coastal vulnerability assessment, natural resource management ( especially water and forests) , transportation and urban planning . Additional lineage information: This data has an accuracy of 0.3m ( 95 confidence ) horizontal with a minimum point density of one laser pulse per square metre. For more information on the data's accuracy, refer to the lineage provided in the data history .

  • Survey Name: Cobar magnetic and radiometric survey, 2021 Datasets Acquired: Magnetics, Radiometrics and Elevation Geoscience Australia Project Number: P5009 Acquisition Start Date: 8/06/2021 Acquisition End Date: 10/08/2021 Flight line spacing: 200 m Flight line direction: East-West (090-270) Total distance flown: 53,617 line-km Nominal terrain clearance: 60 m Blocks: 7 Data Acquisition: Magspec Airborne Surveys Project Management: Geoscience Australia Quality Control: Baigent Geosciences P.L. on behalf of Geoscience Australia Dataset Ownership: Geological Survey of NSW and Geoscience Australia Included in this release: 1. Point-located Data ASCII-column data with accompanying description and definition files. • Magnetics corrected i. Magnetic data with corrections for diurnal, IGRF, tie-levelling, micro-levelling. ii. Elevation data converted to geoidal values and a digital elevation model. • Radiometrics corrected i. Equivalent ground concentrations of radioelements with and without NASVD spectral filtering and standard IAEA processing, pressure, temperature and survey altitude. 2. Grids Gridded data in ERMapper (.ers) format (GDA94, MGA55). • Total magnetic intensity (TMI). • TMI reduced to pole (RTP). • TMI RTP with first vertical derivative applied. • Dose rate (with NASVD and standard processing). • Potassium concentration (%, with NASVD, standard processing). • Thorium concentration (ppm, with NASVD, standard processing). • Uranium concentration (ppm, with NASVD, standard processing). • Radar-derived digital elevation model (geoidal). 3. Images Data in tagged image format (TIF), (GDA94, MGA55). • Total magnetic intensity (TMI). • TMI reduced to pole (RTP). • TMI RTP with first vertical derivative applied. • Dose rate (with NASVD and standard processing). • Potassium concentration (% with NASVD, standard processing). • Thorium concentration (ppm, with NASVD, standard processing). • Uranium concentration (ppm, with NASVD, standard processing). • Radar-derived digital elevation model (geoidal). 4. Reports • P5009_2585_V3_GA_Cobar_Logistics_Report • P5009_BGS_GA_CobarQCReport © Geological Survey of New South Wales and Commonwealth of Australia (Geoscience Australia) 2021. With the exception of the Commonwealth Coat of Arms and where otherwise noted, this product is provided under a Creative Commons Attribution 4.0 International License. (

  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • No abstract available

  • This data package comprises three data sets which cover the ST ARNAUD 1:250 000 map sheet area (ST ARNAUD). This area has recently been covered by airborne geophysical surveys by the Australian Geological Survey Organisation and geologically mapped by the Geological Survey of Victoria and this data package intends to compliment these data.

  • This disc contains scanned PDF copies of uranium-related reports held by Geoscience Australia from the archives of the former Australian Atomic Energy Commission. These reports date from the early 1960s to 1980. The reports are a mix of exploration reports, geological and geographical maps, proposals, feasibility studies, estimations, reserve information, drill hole data and drill cross section files. These reports pertain to various regions around South Australia, including From Embayment, Mount Painter Province, Olary/Willyama province, Gawler Craton, Eucla Basin, Lake Eyre basin, Adelaide geosyncline and Peak & Denison Ranges. Two other discs with PDF scans of drillhole logs and gamma ray probe results in South Australia also exist and may be of interest.

  • Includes copy of AGSO Record 1997/20