From 1 - 10 / 234
  • Geoscience Australia recently commenced work on a multi-year study of Australian petroleum source rocks to improve our understanding of the petroleum resource potential of Australia's sedimentary basins. The Permian source rocks of the Cooper Basin are the first to be characterised for this project. Quantifying the spatial distribution and petroleum generation potential of these source rocks is critical for understanding both the conventional and unconventional hydrocarbon prospectivity of the basin. The Cooper Basin is an upper Carboniferous-Middle Triassic intracratonic basin in northeastern South Australia and southwestern Queensland (Gravestock et al., 1998; Draper, 2002; McKellar, 2013; Carr et al., 2015; Hall et al., 2015a). The basin is Australia's premier onshore hydrocarbon producing province and is nationally significant in providing gas to the eastern Australian gas market. The basin also hosts a range of unconventional gas play types within the Permian Gidgealpa Group, including basin-centred gas and tight gas accumulations, deep dry coal gas associated with the Patchawarra and Toolachee formations, the Murteree and Roseneath shale gas plays and deep coal seam gas in the Weena Trough (e.g. Goldstein et al., 2012; Menpes et al., 2013; Greenstreet, 2015). The principal source rocks for these plays are the Permian coals and coaly shales of the Gidgealpa Group (Boreham & Hill, 1998; Deighton et al., 2003; Hall et al., 2016a). Mapping the petroleum generation potential of these source rocks is critical for understanding the hydrocarbon prospectivity of the basin contains reviews the distribution, type, quality, maturity and generation potential of the Cooper Basin source rocks. Geoscience Australia, in conjunction with the Department of State Development, South Australia and the Geological Survey of Queensland, have recently released a series of studies reviewing the distribution, type, quality, maturity and generation potential of the Cooper Basin source rocks. - A 3D basin model, characterising regional basin architecture, was constructed through the integration of existing horizons with formation tops and seismic interpretations (Hall et al., 2015a; Hall et al., 2016d). - Source rock distribution, amount and quality were reviewed through the analysis of log data and source rock geochemical data (including data acquired from new sampling), characterising source rocks across the whole basin (Hall et al., 2016a; Hall et al., 2016e). - Petroleum systems models, incorporating new Cooper Basin kinetics (Mahlstedt et al., 2015), highlight the variability in burial, thermal and hydrocarbon generation histories for each source rock across the basin (Hall et al., 2016b in prep; Hall et al., 2016f). This GIS contains all data associated with the above reports and accompanying data packages, providing important insights into the hydrocarbon prospectivity of the basin (Hall et al., 2015b; Kuske et al., 2015). The broad extent of the Cooper Basin's Permian source kitchen and its large total generation potential, highlights the basin's significance as a world class hydrocarbon province. The systematic workflow applied here demonstrates the importance of integrated geochemical and petroleum systems modelling studies as a predictive tool for understanding the petroleum resource potential of Australia's sedimentary basins.

  • SIFRA is the acronym for 'System for Infrastructure Facility Resilience Analysis'. The system provides an analytical approach for modelling the vulnerability of high-value infrastructure facilities by taking into consideration the fragilities and configurations of its constituent components. In doing this it uses a network theory based approach for modelling the facility and its operations. This method makes it possible to consider the discrete component-level vulnerabilities within a facility and, significantly, their system-level operational implications to the composite facility fragility. SIFRA also includes tools for modelling system restoration times under varied levels of resource allocation scenarios, and for identifying component criticality.

  • The Australian Coastal Sediment Compartments Web Service provide a hierarchical spatial classification relevant to the assessment of sediment movement in the Australian coastal zone, and represent a tool to assist coastal planning and management. Additional spatial data layers produced during the development of the compartments are provided for reference.

  • The Australian Topographic base map service is seamless national dataset coverage for the whole of Australia. The map is a representation of the Geoscience Australia 250k topographic specification and portrays a detailed graphic representation of features that appear on the Earth's surface. These features include cultural, hydrography and relief themes. The service contains layer scale dependencies.

  • <p>Through the experiences of building several information infrastructures in Australia we have come to wanting to calculate the properties of data licenses in as automated a fashion as possible. To do this, we have trialed decomposing licenses into individual requirements, building on the Creative Commons Rights Expression Language (CC REL) information model (http://creativecommons.org/ns). Such a decomposition, along with the separation of rights management from licenses as per the Open Data Rights Statement vocabulary (ODRS) model (http://schema.theodi.org/odrs/), allows us to model very many different licenses as simple collections of common requirements. In Car & Stenson (2015) we posited requirement resolution actions that systems or people can undertake that satisfy individual requirements and show how systems can b e made to automatically satisfy certain classes of requirements but certainly not all. <p>We are not currently able to automate every aspect of license requirement adherence and we believe that full automation is impossible, however every bit of automation improves the efficiency of data delivery. <p>In this presentation we report on some aspects of our license model, including the modelling of requirements and their resolutions. We also show how such modelling can enhances data access by comparing the status quo and possible future delivery of data via a large multi -agency, Australian data generation project; the Bioregional Assessments Programme.

  • The Land Cover map service includes information derived from the Dynamic Land Cover Dataset (2000-2008) containing Enhanced Vegetation Index (EVI) information. The service provides a base-line for identifying and reporting on change and trends in vegetation cover and extent. It is a cached service with a Web Mercator Projection.

  • This web service provides access to the National Detention and Correctional Facilities datasets, representing the spatial locations of all known immigration detention and correctional facilities located within Australia, all complemented with feature attribution.

  • This web service provides access to the National Telephone Exchanges dataset and presents the spatial locations of all the known telephone exchange facilities located within Australia, all complemented with feature attribution.

  • This web service provides access to the National Telephone Exchanges dataset and presents the spatial locations of all the known telephone exchange facilities located within Australia, all complemented with feature attribution.

  • This web service provides access to the National Dam Walls dataset and presents the spatial locations of major dam walls located within Australia, all complemented with feature attribution.