From 1 - 10 / 1246
  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • This metadata relates to the ANUGA hydrodynamic modelling results for Busselton, south-west Western Australia. The results consist of inundation extent and peak momentum gridded spatial data for each of the ten modelling scenarios. The scenarios are based on Tropical Cyclone (TC) Alby that impacted Western Australia in 1978 and the combination of TC Alby with a track and time shift, sea-level rise and riverine flood scenarios. The inundation extent defines grid cells that were identified as wet within each of the modelling scenarios. The momentum results define the maximum momentum value recorded for each inundated grid cell within each modelling scenario. Refer to the professional opinion (Coastal inundation modelling for Busselton, Western Australia, under current and future climate) for details of the project.

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. darlingrd_1m is an ArcINFO grid of Darling RD grid of Jervis Bay survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • This map has been produced for a court case for the Fair Work Ombudsman. The points on the map were sourced from documents supplied by the Fair Work Ombudsman. Boundaries sourced from AMB v2.0 Refer to Advice Register 679. Location M:\advice\fwo

  • This metadata encompasses shape files found in the "tectonic_elements" directory on the CD-ROM. They are as follows:- * tectonic_elements.shp This dataset is a spatial representation of a database of the Tectonic Elements of the Australian region (clipped to the mentioned GEOGRAPHIC BOUNDING BOX), based on Geoscience Australia's interpretations of existing datasets and on other published information. The database is under constant development as Geoscience Australia carries out new interpretations. * cob.shp This dataset has been derived from tectonic _elements.shp file and contains Geoscience Australia's interpretation of the Continent Ocean Boundary location.

  • Abstract: In most cases a single pixel in a satellite image contains information from more than one type of land cover substance. One challenge is to decompose a pixel with mixed spectral readings into a set of endmembers, and estimate the corresponding abundance fractions. The linear spectral unmixing model assumes that spectral reading of a single pixel is a linear combination of spectral readings from a set of endmembers. Most linear spectral unmixing algorithms rely on spectral signatures from endmembers in pre-defined libraries obtained from previous on-ground studies. Therefore, the applications of these algorithms are restricted to images whose extent and acquisition time coincide with those of the endmember library. We propose a linear spectral unmixing algorithm which is able to identify a set of endmembers from the actual image of the studied area. Existing spectral libraries are used as training sets to infer a model which determines the class labels of the derived image based endmembers. The advantage of such an approach is that it is capable of performing consistent spectral unmixing in areas with no established endmember libraries. Testing has been conducted on a Landsat7 ETM+ image subset of the Gwydir region acquired on Jun 22, 2008. Three types of land cover classes: bare soil, green vegetation and non-photosynthetic are specified for this test. A set consisting of 150 endmember samples and a number of ground abundance observations were obtained from a corresponding field trip. The study successfully identified an endmember set from the image for the specified land cover classes. For most test points, the spectral unmixing and estimation of the corresponding abundance are consistent with the ground validation data. From the 20th International Congress on Modelling and Simulation (MODSIM2013)

  • These data represent the OZROX Field Geology Database containing location and field description information. Field descriptions include, information on lithology, stratigraphic unit, alteration, magnetic susceptibility, hand-held radiometric spectrometer response and structural measurements.OZROX has over 100 000 field sites derived mainly from Geoscience Australia's mapping, with additional contributions from Universities and State Surveys. Many of Geoscience Australia's laboratory databases link to OZROX in the corporate Oracle relational database system. These data are a snapshot at the "Ending Date" of the current database entries.

  • This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173). This file identifes the storm tide inundation extent for a specific Average Recurrence Interval (ARI) event. Naming convention: SLR = Sea Level Rise s1a4 = s1 = Stage 1(extra-tropical storm tide), s2 = Stage 2 (tropical cyclone storm tide) (relating to Haigh et al. 2012 storm tide study), a4 = area 4 and a5 = area 5 2p93 = Inundation height, in this case 2.93 m Dice = this data was processed with the ESRI Dice tool.

  • This data set shows locations of offshore refraction shot points. It is generated from a database containing coordinates of all Geoscience Australia's seismic traverses.