From 1 - 10 / 1246
  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • macrofossil biostratigraphic analysis of samples taken from Cambrian units in Todd 1 well

  • A new approach for developing a 3D temperature map of the Australian continent is currently being developed that relies on combining available proxy data using high-performance computing and large continental-scale datasets. The new modelling approach brings together the current national-scale knowledge of datasets collected by Geoscience Australia and others, including AusMoho, OZTemp, OzSeebase, OZCHEM, surface temperature, the Surface Geology of Australia, sedimentary basins' thermal conductivity and the National Gravity Map of Australia. Bringing together such a range of datasets provides a geoscientific basis by which to estimate temperature in regions where direct observations are not available. Furthermore, the performance of computing facilities, such as the National Computational Infrastructure, is enabling insights into the nature of Australia's geothermal resources which had not been previously available. This should include developing an understanding of the errors involved in such a study through the quantification of uncertainties. Currently the new approach is being run as a pilot study however, initial results are encouraging. The pilot study has been able to reproduce the temperature trends observed in areas that have been heavily constrained by bore-hole observations. Furthermore, a number of areas have now been identified, due to the difference in their estimated temperature from previous methods, which warrant further study.

  • Geoscience Australia in collaboration with the Geological Survey of Western Australia conducted a seismic testing program on the Eucla Basin carbonate sediments during May 2012, during a survey to collect deep seismic data across the western Eucla Basin. These data were collected as part of the Albany-Fraser Seismic Survey that consists of three traverses in south-east Western Australia with a total length of 671 km. The major aim of this survey was to image the basement relationship between the Yilgarn craton, the Albany-Fraser zone, and basement rocks further east. Much of this eastern area is covered by the limestones of the Eucla Basin, and there has been little seismic data acquired in this area. These tests were required to confirm the feasibility of collecting deep seismic data beneath the limestones through the region. Geoscience Australia has had little success in penetrating the limestones of the Eucla Basin in previous surveys. Several sets of recording parameters were tested, including 10 Hz geophones and lower frequency 4.5 Hz geophones as parallel spreads. Also, linear upsweeps were compared to low-dwell non-linear upsweeps designed to introduce more low frequency energy into the signal. Initial results from the testing program were encouraging. Production data were subsequently collected along the Trans Australia Railway access road as far as Haig, using Geoscience Australia's standard deep crustal seismic acquisition parameters.

  • GIS package for the Murchison region of Western Australia for the Palaeovalley Groundwater Project.

  • The image is based on a preliminary version of depth to basement map compiled as part of AGSO marketing activities aimed at encouraging further exploration of Australian oil and gas reserves. The image highlights distribution and shape of Australian onshore and offshore sedimentary basins. For most of the mapped area the image reflects depth to the basement (onshore basins, eastern and southern margins). In the absence of depth to the basement data, the deepest horizon or the horizon reflecting rift-phase development of the basin has been mapped (North West shelf).

  • The fourth paradigm of data intensive science is upon us: a new fundamental scientific methodology has emerged which is underpinned by the capability to analyse large volumes of data using advanced computational capacities. This combination is enabling earth and space scientists to respond to decadal challenges on issues such as the sustainable development of our natural resources, impacts of climate change and protection from national hazards. Fundamental to the data intensive paradigm is data that are readily accessible and capable of being integrated and amalgamated with other data often from multiple sources. For many years Earth and Space science practitioners have been drowning in a data deluge. In many cases, either lacking confidence in their capability and/or not having the time or capacity to manage these data assets they have called in the data professionals. However, such people rarely had domain knowledge of the data they were dealing with and before long it emerged that although the 'containers' of data were now much better managed and documented, in reality the content was locked up and difficult to access, particularly for HPC environments where national to global scale problems were being addressed. Geoscience Australia (GA) is the custodian of over 4 PB of Geoscientific data and is a key provider of evidence-based, scientific advice to government on national issues. Since 2011, in collaboration with CSIRO Minerals Down Under Program, and the National Computational Infrastructure, GA has begun a series of data intensive scientific research pilots that focussed on applying advanced ICT tools and technologies to enhance scientific outcomes for the agency, in particular, national scale analysis of data sets that can be up to 500 TB in size. As in any change program, a small group of innovators and early adopters took up the challenge of data intensive science and quickly showed that GA was able to use new ICT technologies to exploit an information-rich world to undertake applied research and to deliver new business outcomes in ways that current technologies do not allow. The innovators clearly had the necessary skills to rapidly adapt to data intensive techniques. However, if we were to scale out to the rest of the organisation, we needed to quantify these skills. The Strategic People Development Section of GA agreed to: - Conduct a capability analysis of the scientific staff that participated in the pilot projects including a review of university training and post graduate training; and - Conduct capability analysis of the technical groups involved in the pilot projects. The analysis identified the need for multi-disciplinary teams across the spectrum from pure scientists to pure ICT staff along with a key hybrid role - the Data Scientist, who has a greater capacity in mathematical, numerical modelling, statistics, computational skills, software engineering and spatial skills and the ability to integrate data across multiple domains. To fill the emerging gap, GA is asking the questions; how do we find or develop this capability, can we successfully transform the Scientist or the ICT Professional, are our educational facilities modifying their training but it is certainly leading GA to acknowledge, formalise, and promote a continuum of skills and roles, changing our recruitment, re-assignment and Learning and Development strategic decisions.

  • This is the interpretation of the Browse Basin High Resolution Study. The study used a 5,265 km grid of regional, high-resolution seismic reflection data (AGSO Survey BBHR/175), the intergration of sequence stratigraphic analsys of seismic data and of 21 wells, structural mapping, geochemical analysis, and geohistory modelling of potential source rocks. This metatdata will only be focusing on the seismic (structure) grids and the intrepretated faults from the report. There is both raster and vector data. The vector data (faults and holes in data) are located in "/timor_gis/geological/agso_BBHR_flts". The raster images (seismic structures BIL images) are located in "/timor_gis/grids/horizon_grids/agso_bbhr".

  • In this study, the Nuclear Magnetic Resonance (NMR) method was evaluated to provide data on hydraulic conductivities (K) and transmissivities (T) of sediments within the Darling River Floodplain, Australia. NMR data were acquired every 0.5 m using a slim-hole logging system in 26 sonic cored wells to a depth of ~70 m. KNMR can be estimated from the NMR measurements using the Schlumberger-Doll Research Equation: KNMR = C x -2 x T2ML2, where is the NMR effective porosity, T2ML is the logarithmic mean of the T2 distributions, and C is a formation factor related to tortuosity. Prior to the calculation of the KNMR, the NMR data were classified into five hydraulic classes ranging from clay to gravely-coarse sand using the core, geophysical, mineralogical, and hyperspectral logs. In selected zones, aquifer tests were conducted to provide constraints on the K and T of the formations. Least-squares inversion was used to solve for the optimum C values for each of the hydraulic classes versus the aquifer test obtained T. Comparisons between laboratory permeameter measurements and KNMR indicated correspondence within two orders of magnitude. Investigations were also carried out to compare measurements of water content between laboratory determinations (oven drying of wet sediment at 105 oC) and that derived from NMR bore log data. A systematic increase in ratio between the gravimetric water and NMR total water with fining of texture suggests that the NMR instrument is not sensing a large proportion of the hydroscopic moisture present in clay, with implications for using this tool for measuring porosity and diffusion in clay aquitards. Overall, the borehole NMR method provides a rapid way of estimating the near continuous variations in K through a sedimentary sequence, while also providing useful estimates of K at a scale not achievable using traditional aquifer testing methods.

  • Heat flow data across Australia are sparse, with around 150 publicly-available data-points. The heat flow data are unevenly distributed and mainly come from studies undertaken by the Bureau of Mineral Resources (BMR) and the Research School Earth Sciences at the Australian National University in the 1960s and 1970s. Geoscience Australia has continued work started under the federally-funded Onshore Energy Security Program (OESP), collecting data to add to the heat flow coverage of the continent. This report presents temperature, natural gamma and thermal conductivity data for eight boreholes across Australia. Temperature logging was performed down hole with temperatures recorded at intervals less than 20 cm. Samples of drill core were taken from each well and measured for thermal conductivity at Geoscience Australia. One dimensional, conductive heat flow models for the boreholes are presented here. These new determinations will add to the 53 already released by Geoscience Australia under the OESP, totalling 61 determinations added to the Australian continental heat flow dataset since 2007.