From 1 - 10 / 3018
  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. . This GSSA Torrens ReducedToPole 1stverticalderivative grid geodetic is the first vertical derivative of the TMI RTP grid of the Torrens Airborne Magnetic Radiometric and DEM Survey, SA, 2017 survey. This grid has a cell size of 0.0004 degrees (approximately 41m) , and given in units of nT per metre (nT/m). The data used to produce the TMI grid was acquired in 2017 by the SA Government, and consisted of 83653 line-kilometres of data at 200m line spacing and 60m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey. A first vertical derivative was calculated by applying a fast Fourier transform (FFT) process to the TMI RTP grid of the Torrens Airborne Magnetic Radiometric and DEM Survey, SA, 2017 survey to produce this grid. This grid was calculated using an algorithm from the INTREPID Geophysics software package. This grid shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The grid can also be used to locate structural features such as dykes.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.0004 degrees (approximately 41m).The data are in nanoTesla (or nT). The data used to produce this grid was acquired in 2017 by the SA Government, and consisted of 83653 line-kilometres of data at 200m line spacing and 60m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.0004 degrees (approximately 41m) and shows uranium element concentration of the Childara Airborne Magnetic Radiometric and DEM Survey, SA, 2017 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2017 by the SA Government, and consisted of 135047 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Lake Eyre - TMI grid (AWAGS) has a cell size of 0.0004 degrees (approximately 41m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2017 by the SA Government, and consisted of 92215 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.00042 degrees (approximately 43m) and shows thorium element concentration of the Barton Airborne Magnetic Radiometric and DEM Survey, SA, 2017 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2017 by the SA Government, and consisted of 111668 line-kilometres of data at 200m line spacing and 60m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. . This GSSA Barton ReducedToPole 1stverticalderivative grid geodetic is the first vertical derivative of the TMI RTP grid of the Barton Airborne Magnetic Radiometric and DEM Survey, SA, 2017 survey. This grid has a cell size of 0.00042 degrees (approximately 43m) , and given in units of nT per metre (nT/m). The data used to produce the TMI grid was acquired in 2017 by the SA Government, and consisted of 111668 line-kilometres of data at 200m line spacing and 60m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey. A first vertical derivative was calculated by applying a fast Fourier transform (FFT) process to the TMI RTP grid of the Barton Airborne Magnetic Radiometric and DEM Survey, SA, 2017 survey to produce this grid. This grid was calculated using an algorithm from the INTREPID Geophysics software package. This grid shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The grid can also be used to locate structural features such as dykes.

  • Categories  

    Digital Elevation data record the terrain height variations from the processed point- or line-located data recorded during a geophysical survey. This GSSA Fowler Elevation laser grid geodetic is elevation data for the Fowler Airborne Magnetic Radiometric and DEM Survey, SA, 2017. This survey was acquired under the project No. 1285 for the geological survey of SA. The grid has a cell size of 0.00042 degrees (approximately 43m). This grid contains the ground elevation relative to the geoid for the Fowler Airborne Magnetic Radiometric and DEM Survey, SA, 2017. It represents the vertical distance from a location on the Earth's surface to the geoid. The data are given in units of meters. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose.

  • Categories  

    Digital Elevation data record the terrain height variations from the processed point- or line-located data recorded during a geophysical survey. This GSSA Fowler Elevation radar grid geodetic is elevation data for the Fowler Airborne Magnetic Radiometric and DEM Survey, SA, 2017. This survey was acquired under the project No. 1285 for the geological survey of SA. The grid has a cell size of 0.00042 degrees (approximately 43m). This grid contains the ground elevation relative to the geoid for the Fowler Airborne Magnetic Radiometric and DEM Survey, SA, 2017. It represents the vertical distance from a location on the Earth's surface to the geoid. The data are given in units of meters. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.00042 degrees (approximately 43m) and shows thorium element concentration of the Fowler Airborne Magnetic Radiometric and DEM Survey, SA, 2017 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2017 by the SA Government, and consisted of 94903 line-kilometres of data at 200m line spacing and 60m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. . This GSSA Fowler ReducedToPole 1stverticalderivative grid geodetic is the first vertical derivative of the TMI RTP grid of the Fowler Airborne Magnetic Radiometric and DEM Survey, SA, 2017 survey. This grid has a cell size of 0.00042 degrees (approximately 43m) , and given in units of nT per metre (nT/m). The data used to produce the TMI grid was acquired in 2017 by the SA Government, and consisted of 94903 line-kilometres of data at 200m line spacing and 60m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey. A first vertical derivative was calculated by applying a fast Fourier transform (FFT) process to the TMI RTP grid of the Fowler Airborne Magnetic Radiometric and DEM Survey, SA, 2017 survey to produce this grid. This grid was calculated using an algorithm from the INTREPID Geophysics software package. This grid shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The grid can also be used to locate structural features such as dykes.