From 1 - 10 / 35
  • These grids represent the potentiometric surface of the Cadna-owie - Hooray Aquifer in the Great Artesian Basin at 20 year intervals from 1900-2010. They were interpolated from GAB water table elevations and from observations of hydraulic head obtained from state groundwater databases. Head measurements were density corrected prior to creation of surfaces. Where there were no temperatures supplied with the head measurement to allow correction, temperature was interpolated from dataset 'Great Artesian Basin groundwater temperature' (Geoscience Australia dataset, Catalogue No. 76929, available from http://www.ga.gov.au).The grid surfaces 1900-1920, ?, 2000-2010 account for the possible effects of geological faults on groundwater flow in the GAB. Grids 1900-1920_nf and 2000-2010_nf are without the influence of regional tectonic faulting. Null values assigned as 1.000000e+30. Grid cell size (X, Y) = 5000 m, 5000 m. This GIS data set and metadata was produced by CSIRO for the Great Artesian Basin Water Resource Assessment and used in figures 7.2, 7.3 and 7.4 of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. Projection is Albers equal area conic, with central meridian 143 degrees longitude, standard parallels at -21 and -29 degrees latitude and latitude of projection's origin at -25. For more information, contact: hris Turnadge Research Projects Officer CSIRO Land and Water Waite Road Urrbrae SA 5064

  • Difference between 'pre-development' (1900-1920) and modern (2000-2010) groundwater levels at selected bore locations in the Great Artesian Basin This GIS data set was produced by CSIRO for the Great Artesian Basin Water Resource Assessment and used in Figure 7.5 of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76931. For further information contact Phil Davies, Research Projects Officer, CSIRO Land and Water, Waite Road, Urrbrae SA 5064

  • Thickness of Cenozoic weathering in the Great Artesian Basin. Data is available as isopachs and raster. Isopachs are in Shapefile format. Rasters are in both ESRI grid and ASCII grid formats. This GIS data set was produced for the Great Artesian Basin Water Resource Assessment and used in Figure 3.3 of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76539.

  • Groundwater recharge estimates within the intake beds of the Cadna-owie - Hooray and equivalents aquifer and the Hutton Sandstone aquifer in the Great Artesian Basin. Recharge estimates are given in mm/year and are calculated using chloride mass balance method. Grid cell size (X, Y) = 0.015 DD, 0.015 DD. This GIS data set was produced for the Great Artesian Basin Water Resource Assessment and used in Figures 7.9 of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76932. For further information, contact: Phil Davies Research Projects Officer CSIRO Land and Water Waite Road Urrbrae SA 5064

  • Thickness of the basal Jurassic-Cretaceous sandstone aquifers in the Carpentaria and Laura basins. Data is available as isopachs and raster. Isopachs are in Shapefile format. Rasters are in both ESRI grid and ASCII grid formats. This GIS data set was produced for the Great Artesian Basin Water Resource Assessment and used in: Figure 2.12 of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. Figure 5.8 of Smerdon BD, Welsh WD and Ransley TR (eds) (2012) Water resource assessment for the Carpentaria region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76536. LINEAGE (continued from Lineage field) ------------------------------------------------------ REFERENCES (continued) Meyers, N. A. (1969). Carpentaria Basin. GSQ Report 34. Queensland, Geological Survey of Queensland. Mines Administration Pty Ltd. (1962). Cabot-Blueberry Marina No. 1, Authority to Prospect 61P, Queensland. Well Completion report. Report Q/61P/112. Company report 976. Brisbane, Geological Survey of Queensland. Perryman, J. C. (1964). Midwood Exploratory Proprietary Ltd., Completion report, Burketown No.1, A-P 91P, Queensland. Company Report 1480. Brisbane, Geological Survey of Queensland. Smart J, Grimes KG, Doutch HF and Pinchin J (1980) The Carpentaria and Karumba Basins, north Queensland. Bulletin 202. Bureau of Mineral Resources, Geology and Geophysics, Australia. Williams, L. J. (1976). GSQ Ebagoola 1 - Preliminary lithologic and composite log. Record 1988/14. Brisbane, Queensland Department of Mines and Geological Survey of Queensland. Williams, L. J. and L. M. Gunther (1989). GSQ Dobbyn 1 - Preliminary lithologic and composite log. Record 1989/22. Brisbane, Geological Survey of Queensland. METHOD: Data was imported into ArcGIS as point sets. The isopach value field was used to interpolate a surface using the Topo to Raster tool in the Spatial analyst toolset. Isopachs were generated from the raster using the Contour tool in the 3d analyst toolset in ArcGIS. The raster and isopachs were clipped to a boundary created from : 1. Gilbert River Formation and equivalents sourced from inset C of Plate 2 The Geology of the Carpentaria and Karumba Basins Queensland 1980 which is part of the Carpentaria and Karumba Basins, North Queensland Bureau of Mineral Resources, Geology and Geophysics Bulletin 202. J.Smart, K.G.Grimes, H.F.Doutch & J.Pinchin. ISBN 0642046182 2. Great Artesian Basin Water Resource Assessment project boundary.

  • Thickness of the Rolling Downs group in the Great Artesian Basin Data is available as a raster in both ESRI grid and ASCII grid formats. This GIS data set was produced for the Great Artesian Basin Water Resource Assessment and used in Figure 5.29 of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76540.

  • Polygons representing a qualitative estimate of the potential for hydraulic interconnection between the base of the Great Artesian Basin and top of underlying basement units. This dataset is derived from the 'Hydrogeological basement units in contact with the base of the Great Artesian Basin' dataset (Geoscience Australia, catalogue #75910, 2013) and 'Base Great Artesian Basin hydrogeological units in contact with basement' dataset (Geoscience Australia, catalogue #75911, 2013). It is used to identify potential hydraulic interconnection between the Great Artesian Basin and basement units. Data is available as polygons in Shapefile format This GIS data set was produced for the Great Artesian Basin Water Resource Assessment and used in Figure 3.6 of Smerdon BD, Ransley TR, Radke BM and Kellett JR (2012) Water resource assessment for the Great Artesian Basin. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 75839.

  • Interpreted groundwater flow divide in the Hutton Sandstone between the Surat and Clarence-Moreton basins in the Great Artesian Basin (to be used in conjunction with dataset 'Surat / Clarence-Moreton basins Hydrogeological Boundary' (GA 2013, Catalogue #75830) to define the easternmost boundary of the GAB) This data set provides an approximate location of the groundwater divide as a polygon in Shapefile format. This data set was used in: Figure 5.3 in Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. Figure 5.3 in Smerdon BD and Ransley TR (eds) (2012) Water resource assessment for the Surat region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia Figure 14 in Smerdon BD, Marston FM and Ransley TR (2012) Water resource assessment for the Surat region. Summary of a report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. 16pp. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 77024.

  • Thickness of Cenozoic sequence overlying the Great Artesian Basin. Data is available as isopachs in Shapefile format. This GIS data set was produced for the Great Artesian Basin Water Resource Assessment and used in Figure 3.1 of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76534.

  • Grids representing chemical parameter concentrations and isotopic variations in groundwater in the Great Artesian Basin for the following aquifers: Adori Sandstone; Cadna-owie - Hooray and equivalents; Hutton Sandstone and Winton-Mackunda Formation. (Note: Stable isotope carbon variations, Carbon-14 variation and Chlorine ratios produced for the Cadna-owie-Hooray and equivalents only) Hydrochemical parameters and isotopic variations mapped are: - Total dissolved solids (TDS) (mg/L) (adori_tds.txt, cad-hoor_tds.txt, hutton_tds.txt, wint-mack_tds.txt) - Total alkalinity (mg/L CaCO3) (adori_alk, cad-hoor_alk, hutton_alk, wint-mack_alk) - Sulphate (mg/L) ( adori_so4, cad-hoor_so4, hutton_so4, wint-mack_so4) - Fluoride (mg/L) ( adori_flu, cad-hoor_flu, hutton_flu, wint-mack_flu) - Sodium adsorption ratio (adori_sar, cad-hoor_sar, hutton_sar, wint-mack_sar) - Stable carbon isotope variations (d13C % PDB) ( tp-rs_13c_ch) - Carbon-14 variation (14C pMC) ( tp-rs_14c_ch) - Chlorine-36 to Chloride ratio ( t-rs_36clr_ch) Grid cell size (X, Y) = 0.015 DD, 0.015 DD. These GIS data sets were produced for the Great Artesian Basin Water Resource Assessment and used in Figures 8.2, 8.4, 8.5, 8.6, 8.8, 8.10, 8.12 and 8.13 of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76942.