From 1 - 10 / 7405
  • Small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) are used to directly detect the processes of hydrocarbon generation in the 10 nm to 10 μm size pores in carbonate and siliciclastic rocks which contain no land-plant material suitable for conventional maturity determination by vitrinite reflectance. The method takes advantage of the pore-size-specific variation of neutron scattering contrast between the solid rock matrix and pore-space content with depth, which is caused by thermal maturation of organic matter through the oil and gas generation windows. SANS and USANS measurements were performed on bedding plane-orientated core slices, extracted from a series of 10 to 12 depth intervals for three wells, CKAD0001, MacIntyre 1 and Baldwin 1 in the southern Georgina Basin, central Australia. The depth intervals, intersecting the organic-rich basal ‘hot’ shales of the middle Cambrian Arthur Creek Formation, were selected based on Rock-Eval pyrolysis data. SANS and USANS results indicate that oil generation has occurred in the past in nano-sized pores in rocks that are now at depths of around 538.4 m in CKAD0001 and 799.3 m in MacIntyre 1. Furthermore, in the CKAD0001 well, the oil-wet pores extend into the larger pore-size range (at least up to 10 μm) due to the efficient expulsion of oil. At around 880 m in Baldwin 1, the influence of pyrobitumen reverts pore space from gas wet to oil wet. These hydrocarbons have remained in situ since the Devonian when the Neoproterozoic to Paleozoic section was exhumed in the Alice Springs Orogeny and subsequently eroded, preserving only remnants of the once extensive basin sediments.

  • <p>Communities and the economic activity within them rely heavily on critical infrastructure. Utility infrastructure facilities are usually comprised of a range of dissimilar but interconnected components characterised by varying degrees of operational criticality and differing vulnerabilities to earthquake ground motion. The severity of damage to these components in an earthquake has complex implications for facility post-event functionality, repair cost and recovery. This paper describes how an integration of physical component vulnerability, associated component functionality and a system model of the facility have been used to understand the vulnerability, criticality and mitigation opportunities associated with a thermal power station and a major substation. <p>In this research a review of published component level models has been conducted and the models were adapted using as-built design information and the engagement of industry expertise. The functionality of facility components for a range of damage states have been assessed along with replacement and repair costs utilising the specialist knowledge of asset managers. Finally, the system behavior of the facilities has been analysed using a network model to evaluate facility behaviour and to assess component criticality. These elements have been integrated in a Monte Carlo simulation using an application called SIRA (System for Infrastructure Resilience Analysis) that enables the outcomes of a broad spectrum of events to be assessed and used to develop facility level fragility models. <p>In this paper the utility of this modelling approach is demonstrated. Comparisons are made with US models in HAZUS that are based on heuristic judgment and the experience in a number of US earthquakes. Finally, the benefits of this approach to assessing the vulnerability of legacy assets and the identification of mitigation opportunities are demonstrated.

  • <p>The Roebuck Basin on Australia’s offshore north-western margin is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the North West Margin Energy Studies Section (NWMES). This offshore program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the central North West Shelf and attract exploration investment to Australia. <p>The recent oil and gas discoveries at Phoenix South 1 (2014), Roc 1 (2015-16), Roc 2 (2016), Phoenix South 2 (2016), Phoenix South 3 (2018) and Dorado 1 (2018) in the Bedout Sub-basin demonstrate the presence of a petroleum system in Lower Triassic strata. The current study aims to better understand this new petroleum system and establish its extent. <p>As part of this program, TOC and Rock-Eval pyrolysis analyses were undertaken by Geoscience Australia on selected rock samples from the well Roc 2 to establish their hydrocarbon-generating potential and thermal maturity.

  • <p>The Roebuck Basin on Australia’s offshore north-western margin is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the North West Margin Energy Studies Section (NWMES). This offshore program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the central North West Shelf and attract exploration investment to Australia. <p>The recent oil and gas discoveries at Phoenix South 1 (2014), Roc 1 (2015-16), Roc 2 (2016), Phoenix South 2 (2016), Phoenix South 3 (2018) and Dorado 1 (2018) in the Bedout Sub-basin demonstrate the presence of a petroleum system in Lower Triassic strata. The current study aims to better understand this new petroleum system and establish its extent. <p>As part of this program, compositional and isotopic analyses were undertaken by Geoscience Australia on gas samples from the wells Roc 1 and Roc 2 and data from these analyses are released in this dataset.

  • Geological storage of CO2 has been identified as an effective technology to reduce greenhouse gas emissions and mitigate global climate change. Deep saline aquifers are recognised as having the highest CO2 storage potential. The Junggar Basin is located in the northern Xinjiang and has extensive distributed deep saline aquifers, which could be the effective sites for CO2 storage. CO2 injectivity and storage capacity were investigated through both static and dynamic modelling on the Cretaceous Donggou Formation aquifer in Zhundong area, Junggar Basin. A static reservoir model was constructed by integrating well data and seismic attributes, and the best estimate of storage capacity (P50) was estimated to be approximately 72 million tonnes using a storage coefficient of 2.4% (P50). Dynamic simulation provided a comprehensive understanding of injectivity, storage capacity and explanation of the different storage mechanisms after CO2 injection. The total injection of CO2 was 31.4 million tonnes with five injection wells. Simulations suggest that at year 300 after injection, 28% of the injected CO2 was stored by residual trapping and 26% of the injected CO2 was dissolved into formation water. The modelling results suggest that there is good potential for large scale CO2 aquifer storage in the Junggar Basin.

  • <p>The Roebuck Basin on Australia’s offshore north-western margin is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the North West Margin Energy Studies (NWMES) section. This offshore program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the central North West Shelf and facilitate exploration investment in Australia. <p>The recent oil and gas discoveries at Phoenix South 1 (2014), Roc 1 (2015-16), Roc 2 (2016), Phoenix South 2 (2016), Phoenix South 3 (2018) and Dorado 1 (2018) wells in the Bedout Sub-basin demonstrate the presence of a petroleum system in Lower Triassic strata. The current study aims to better understand this new petroleum system and establish its extent. <p>As part of this program, a range of organic geochemical analyses were acquired on two crude oils from the Phoenix South 1 ST2 well with these data released in this dataset.

  • Zircon and xenotime U–Pb SHRIMP geochronology was conducted on samples from the South Nicholson Basin, and western Mount Isa Orogen. These samples were collected from outcrop and core from the Northern Territory and Queensland. The age data indicate the South Nicholson Basin was deposited after ca 1483 Ma but deposition most likely had ceased by ca 1266 Ma; the latter age likely represents post-diagenetic fluid flow in the area, based on U–Pb xenotime data. Geochronology presented here provides the first direct age data confirming the South Nicholson Group is broadly contemporaneous with the Roper Group of the McArthur Basin, which has identified facies with high hydrocarbon prospectivity. In addition, geochronology on the Paleoproterozoic McNamara Group provides new age constraints that have implications for the regional stratigraphy. The data obtained in this geochronological study allow for a comprehensive revision of the existing stratigraphic framework, new correlations and enhances commodity prospectivity in central northern Australia.

  • The Lambert Graben is a deep crustal depression currently occupied by the Lambert Glacier and its tributaries. The mapped area extends from 76°S to 66°S and trends in a north north easterly direction, paralleling the direction of the graben.

  • The Eucla-Gawler 2D deep seismic survey L203 consists of one 834 km seismic line, 13GA-EG1. The data acquisition commenced on 28 November 2013, from Haig, WA and continued east along a road/track parallel to the Trans Australian Railway ending at Tarcoola, SA, on 7 February 2014. The reflection seismic data processing used standard processing and included special attention on refraction statics and deconvolution essential for optimal reflection imaging. High fold stacking provided enhanced seismic reflections in regions of no or weak reflectivity at standard fold. For most of the seismic line, the 20 s seismic data provide images of the full depth of the crust through this region.

  • <p>A geochemical study was conducted to establish oil-oil correlations and evaluate potential source rocks within the latest Devonian–earliest Carboniferous succession of the onshore Canning Basin, Western Australia. Aromatic hydrocarbons, together with the routinely used saturated biomarker ratios and stable carbon isotopes, demonstrate that the recently discovered Ungani oilfield located on the southern margin of the Fitzroy Trough are similar, but not identical, to the early Carboniferous Larapintine 4 (L4) oil family present to the north of the Fitzroy Trough on the Lennard Shelf. The L4 oil family has been correlated to a lower Carboniferous (Tournaisian) source rock core sample from the Laurel Formation at Blackstone-1 although its bulk geochemical properties signify that it could generate substantially more gas than liquid hydrocarbons. <p>The Ungani oils can be distinguished from the L4 oils by their higher concentrations of paleorenieratane and isorenieratane, coupled with more depleted δ13C values for n-alkanes, pristane and phytane compared with other components. Hopane isomerisation ratios show distinct grouping of the two oil families that reflect both source and maturity variations. The oil from Wattle-1 ST1 on the Lennard Shelf also has an unusual composition, exhibiting some molecular and isotopic features similar to both the L4 and Ungani oils. Source rocks for the Ungani and Wattle-1 ST1 oils are unknown since their geochemical signature does not match that of the Tournaisian Laurel Formation or the Middle−Upper (Givetian–Frasnian) Devonian Gogo Formation which sourced the Devonian-reservoired Larapintine 3 oils at Blina and Janpam North-1. It is postulated that such potential oil-prone source rocks could occur within the Famennian–Tournaisian succession.