From 1 - 10 / 855
  • Spatially continuous data of environmental variables is often required for marine conservation and management. However, information for environmental variables is usually collected by point sampling, particularly for the deep ocean. Thus, methods generating such spatially continuous data by using point samples to estimate values for unknown locations become essential tools. Such methods are, however, often data- or even variable- specific and it is difficult to select an appropriate method for any given dataset. In this study, 14 methods (37 sub-methods) are compared using samples of mud content with five levels of sample density across the southwest Australian margin. Bathymetry, distance to coast, and slope were used as secondary variables. Ten-fold cross validation with relative mean absolute error (RMAE) and visual examination were used to assess the performance of these methods. A total of 1,850 prediction datasets were produced and used to assess the performance of the methods. Considering both the accuracy and the visual examination, we found that a combined method, random forest and ordinary kriging (RKrf), is the most robust method. No threshold in sample density was detected in relation to prediction accuracy. No consistent patterns were observed between the performance of the methods and data variation. The RMAE of three most accurate methods is about 30% lower than that of the best methods in previous publications, highlighting the robustness of the methods selected in this study. The limitations of this study were discussed and a number of suggestions were provided for further studies.

  • This map shows the area of the Commonwealth Scalefish Hook Sector Gulper Shark Closure - Southern Dogfish. Modified from GeoCat 65110 (2007) as per the Southern and Eastern Scalefish and Shark Fishery (Closures) Direction No. 1 2009 - Schedule 16. Produced for the Australian Fisheries Management Authority. Not for public sale or distribution by GA.

  • This document describes opportunities for supporting the Philippines CSCAND agencies to enhance their capacity to assess the risk and impact from natural hazards based on an assessment of current gaps. The CSCAND agencies include the Mines & Geosciences Bureau, the Philippine Institute of Volcanology and Seismology, Philippine Atmospheric, the Geophysical and Astronomical Services Administration, the National Mapping and Resource Information Agency, and the Office of Civil Defence. It is important to note that efforts to assess natural hazard risk are only one mechanism by which the CSCAND agencies support the reduction of disaster risk in the Philippines and that this paper covers only a part of the disaster risk reduction activity spectrum.

  • Summary of last 12 months activity in Acreage Release Area.

  • As part of initiatives by the Australian and Queensland Governments to support energy security and mineral exploration, a deep seismic reflection survey was conducted in 2007 to establish the architecture and geodynamic framework of north Queensland. With additional support from AuScope, nearly 1400 km of seismic data were acquired along four lines, extending from near Cloncurry in the west to almost the Queensland coast. Important results based on the interpretation of the deep seismic data include: (1) A major, west-dipping, Paleo-proterozoic (or older) crustal boundary, which we interpret as a suture, separates relatively homogenous, thick crust of the Mt Isa Province from thinner, two layered crust to the east. This boundary is also imaged by magnetotelluric data and 3D inversion of aeromagnetic and gravity data. (2) East of the Mt Isa Province the lower crust is highly reflective and has been subdivided into three mappable seismic provinces (Numil, Abingdon and Agwamin) which are not exposed at the surface. Nd model ages from granites sampled at the surface above the western Numil and central Abingdon Seismic Provinces have very similar Nd model ages, suggesting that both provinces may have had a very similar geological history. By contrast, granites sampled above the eastern Agwamin Seismic Province have much younger Nd model ages, implying a significantly younger component in the lower crust; we consider that the Agwamin Seismic Province contains a strong Grenvillean-age component.

  • This map shows the boundary of the Maritime Security Zones for each port for the purpose of the Maritime Transport & Office Security Act 2003. 5 sheets (Colour) May 2009 Not for sale or public distribution Contact Manager LOSAMBA project

  • In addition to typical seafloor VHMS deposits, the ~3240 Ma Panorama district contains contemporaneous greisen- and vein-hosted Mo-Cu-Zn-Sn occurrences that hosted by the Strelley granite complex, which drove VHMS circulation. High-temperature alteration zones in volcanic rocks underlying the VHMS deposits are dominated by quartz-chlorite±albite assemblages, with lesser low-temperature quartz-sericite±K-feldspar assemblages, typical of VHMS hydrothermal systems. Alteration assemblages associated with granite-hosted greisens and veins, which do not extend into the overlying volcanc pile, include quartz-topaz-muscovite-fluorite and quartz-muscovite(sericite)-chlorite-ankerite. Fluid inclusion and stable isotope data suggest that the greisens formed from high temperature (~590C), high salinity (38-56 wt % NaCl equiv) fluids with high densities (>1.3 g/cm3) and high -18O (9.3±0.6-), which are compatible with magmatic fluids evolved from the Strelley granite complex. Fluids in the volcanic pile (including the VHMS ore-forming fluids) were of lower temperature (90-270C), lower salinity (5.0-11.2 wt % NaCl equiv), with lower densities (0.88-1.01 g/cm3) and lower -18O (-0.8±2.6), compatible with evolved Paleoarchean seawater. Fluids that formed the quartz-chalcopyrite-sphalerite-cassiterite veins, which are present within the upper granite complex, were intermediate in temperature and isotopic composition (T = 240-315C; -18O = 4.3±1.5-) and are interpreted to indicate mixing between the two end-member fluids. Evidence of mixing between evolved seawater and magmatic-hydrothermal fluid in the granite complex, along with a lack of evidence for a magmatic component in fluids from the volcanic pile, suggest partitioning of magmatic-hydrothermal from evolved seawater hydrothermal systems in the Panorama VHMS system, interpreted as a consequence swamping of the system by evolved seawater or density contrasts.

  • Redland 2009 LiDAR survey was captured over the Redland City Council region between 25th March and 9th June 2009. The data was acquired by AAM Hatch (now AAMGroup) and funded by Queensland and Commonwealth governments. The data is licensed for use by all Commonwealth, State and Local Government. Data acquisition and post-processing has been controlled to achieve a vertical accuracy within 0.15m (RMS, 68% CI) and horizontal accuracy within 0.45 m. Horizontal coordinates are based upon Map Grid of Australia (MGA) Zone 56 projection. Vertical coordinates are referenced to Australian Height Datum (AHD). The data was captured with point density of 2.5 points per square metre and the data is available as mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing in 1km tiles. The data are available as a number of surface types, products and formats including: mass points, digital elevation model (DEM) and hydrologically enforced DEM (HDEM) for the low lying coastal areas. Redland DEM forms part of the Brisbane HDEM which is a combination of the Brisbane 2009 LiDAR, Redland 2009 LiDAR, Moreton Bay 2009 LiDAR and Logan 2009 LiDAR survey areas.

  • This map shows the boundary of the Maritime Security Zones for each port for the purpose of the Maritime Transport & Office Security Act 2003. 1 sheet (Colour) May 2009 Not for sale or public distribution Contact Manager LOSAMBA project