From 1 - 10 / 146
  • <p>This dataset measures the mean decadal warming rates of the sea surface temperature (SST) in 58 Australian Marine Parks (with the exception of the Heard Island and McDonald Islands Marine Park) over the past 25 years (1992 to 2016). They are derived from the Sea Surface Temperature Atlas of the Australian Regional Seas (SSTAARS). The field of “trend_d” represents the linear SST trend for March 1992 to December 2016. The unit of the warming rates is Celsius degree/per decade. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • <p>The dataset measures the long-term seasonal means of the chlorophyll a concentrations of ocean surface waters. They are derived from MODIS (aqua) images using NASA's SeaDAS image processing software. The monthly chlorophyll a images between July 2002 and December 2017 are used to calculate the means of the four austral seasons: winter (June, July, and August), spring (September, October and November), summer (December, January and February) and autumn (March, April and May). The extent of the dataset covers the entire Australian EEZ and surrounding waters (including the southern ocean). The unit of the dataset is mg/m3. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • <p>The dataset indicates the long-term overall primary productivity hotspots of ocean surface waters. They are derived from MODIS (aqua) images using NASA's SeaDAS image processing software. The monthly chlorophyll a images between July 2002 and August 2014 are used to identify the overall primary productivity hotspots. The extent of the dataset covers the entire Australian EEZ and surrounding waters (including the southern ocean). The value (between 0 and 1.0) of the dataset represents the likelihood of the location being a primary productivity hotspot. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • The Timor Sea and its tropical marine environment support significant and growing economic activity including oil and gas exploration. To reduce uncertainty in decision making regarding the sustainable use and ongoing protection of these marine resources, environmental managers and resource users require sound scientific information on the composition and stability of seabed environments and their biological assemblages. Surveys SOL4934 and SOL5117 to the eastern Joseph Bonaparte Gulf were undertaken in August and September 2009 and July and August 2010 respectively, in collaboration with the Australian Institute of Marine Science, with research collaborations from the RAN Australian Hydrographic Office, the Geological Survey of Canada and the Museum and Art Gallery of the Northern Territory. The purpose of these surveys were to develop biophysical maps, and deliver data and information products pertaining to complex seabed environment of the Van Diemen Rise and identify potential geohazards and unique, sensitive environments that relate to offshore infrastructure. This dataset comprises sediment oxygen demand measurments made on the upper 2 cm of seabed sediments. Some relevant publications are listed below: 1. Heap, A.D., Przeslawski, R., Radke, L., Trafford, J., Battershill, C. and Shipboard Party. 2010. Seabed environments of the eastern Joseph Bonaparte Gulf, Northern Australia: SOL4934 Post Survey Report. Geoscience Australia Record 2010/09, pp.81. 2. Anderson, T.J., Nichol, S., Radke, L., Heap, A.D., Battershill, C., Hughes, M., Siwabessy, P.J., Barrie, V., Alvarez de Glasby, B., Tran, M., Daniell, J. & Shipboard Party, 2011b. Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia: GA0325/Sol5117 - Post-Survey Report. Geoscience Australia, Record 2011/08, 58pp. 3. Radke, L.C., Li, J., Douglas, G., Przeslawski, R., Nichol, S, Siwabessy, J., Huang, Z., Trafford, J., Watson, T. and Whiteway, T. Characterising sediments of a tropical sediment-starved continental shelf using cluster analysis of physical and geochemical variables. Environmental Chemistry, in press

  • The Timor Sea and its tropical marine environment support significant and growing economic activity including oil and gas exploration. To reduce uncertainty in decision making regarding the sustainable use and ongoing protection of these marine resources, environmental managers and resource users require sound scientific information on the composition and stability of seabed environments and their biological assemblages. Surveys SOL4934 and SOL5117 to the eastern Joseph Bonaparte Gulf were undertaken in August and September 2009 and July and August 2010 respectively, in collaboration with the Australian Institute of Marine Science, with research collaborations from the RAN Australian Hydrographic Office, the Geological Survey of Canada and the Museum and Art Gallery of the Northern Territory. The purpose of these surveys were to develop biophysical maps, and deliver data and information products pertaining to complex seabed environment of the Van Diemen Rise and identify potential geohazards and unique, sensitive environments that relate to offshore infrastructure. This dataset comprises inorganic chemistry of seabed sediments (0-2cm). Some relevant publications are listed below: 1. Heap, A.D., Przeslawski, R., Radke, L., Trafford, J., Battershill, C. and Shipboard Party. 2010. Seabed environments of the eastern Joseph Bonaparte Gulf, Northern Australia: SOL4934 Post Survey Report. Geoscience Australia Record 2010/09, pp.81. 2. Anderson, T.J., Nichol, S., Radke, L., Heap, A.D., Battershill, C., Hughes, M., Siwabessy, P.J., Barrie, V., Alvarez de Glasby, B., Tran, M., Daniell, J. & Shipboard Party, 2011b. Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia: GA0325/Sol5117 - Post-Survey Report. Geoscience Australia, Record 2011/08, 58pp. 3. Radke, L.C., Li, J., Douglas, G., Przeslawski, R., Nichol, S, Siwabessy, J., Huang, Z., Trafford, J., Watson, T. and Whiteway, T. Characterising sediments of a tropical sediment-starved continental shelf using cluster analysis of physical and geochemical variables. Environmental Chemistry, in press

  • On the Australian margin, submarine canyons have formed along all sides of the continent and are exposed to the potential influence of large-scale ocean currents, including the Leeuwin Current and the East Australian Current. Recognised in marine bioregional plans as potential biodiversity hotspots, many of these canyons sit within the new national network of Commonwealth Marine Reserves. This GIS polygon layer contains 753 submarine canyons along the Australian continental margin and external territorie, mapped from a range of bathymetry datasets. The layer has attributes describing the canyon's geophysical characteristics. The definitions are as follows. SHAPE_Leng: Perimeter (km) SHAPE_Area: Planar area (km2) centreli_L: Centreline length (km); total length of canyon/sub-canyons centreline(s) MBG_Width: Minimum bounding rectangle width (km) MBG_Length: Minimum bounding rectangle length (km) MBG_Orient: Minimum bounding rectangle orientation len_wid_ra: Length to width ratio; a measure of elongation; larger the value the more elongate the canyon border_ind: Border index; a measure of geometric complexity; larger he value the more fractal the canyon compactnes: a measure of compactness; larger the value the more compact the canyon (or the smaller its border) no_branch: Number of sub-canyons head_incis: Head incision (m); incision deph of canyon head head_depth: Head depth (m); water depth of canyon head foot_depth: Foot depth (m); water depth of canyon foot depth_rang: Depth range (m); depth range between canyon head and foot slope_mean: Slope mean; average slope gradients within canyon polygon slope_std: Slope standard deviation; standard deviation of the slope gradients within canyon polygon slope_rang: Slope range; range between maximum and minimum slope gradients within canyon polygon surArea1: Surface area (km2); 3-D surface area of canyon rugosity: Rugosity; roughness of canyon surface volume: Volume (km3); 3-D volume enclosed by the canyon bottom and walls head_x: X coordinate of canyon head; in Asia south Equidistant Conic projection head_y: Y coordinate of canyon head; in Asia south Equidistant Conic projection foot_x: X coordinate of canyon foot; in Asia south Equidistant Conic projection foot_y: Y coordinate of canyon foot; in Asia south Equidistant Conic projection h_f_dist: Head to foot distance (km); euclidian distance between canyon head and foot h_f_slope: head to foot slope; slope gradient between canyon head and foot dist_shelf: Distance to shelf (km); euclidian distance of canyon to shelf break; a distance of zero indicates that canyon touchs or intersects the shelf break or within the continental shelf near_canyo: Nearest canyon (km); euclidian distance to the nearest canyon dist_coast: Distance to coast (km); euclidian distance of canyon to Australian coast focal_var: Focal variety; number of neighbouring canyons within a nominated proximity inci_depth: Incision depth (m); averged depth of canyon area that incises into shelf break; slope-confined canyons have values of zero inci_area: Incision area (km2) ; area of canyon area that incises into shelf break; slope-confined canyons have values of zero slope15: Percentage of slope gradient greater than 15 degree; percentage of canyon area with slope gradients greater than 15 degree sinuosity: a measure of sinuosity; larger the value the more sinuous the canyon shelf_inci: Shelf incision; shlef-incising canyons have value of 1; slope-confined canyons have value of zero dist_river: Distance to revier (km); euclidian distance to the mouth of the nearest permanent river uncertain: Uncertainty; mapping uncertainty assigned to canyon; larger the value the more uncertain the mapping is marine_reg: Marine region; the location of the canyon in one of the marine regions canyon_nam: The name of canyon if known map_region: Map region; the location of canyon in one of the map regions Please refer to Marine Geology 357, 362-383 for details of mapping methods.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. Shipboard and AUV multibeam bathymetry and sub-bottom profiler data indicated the presence of recently active faults in the area, some with significant seafloor surface expression (i.e. fault scarps with up to 40m offset). Some of these faults were visually inspected by the ROV which also confirmed the presence of diverse biological communities. Possible indications of shallow gas were observed on sub-bottom profiles, including amplitude anomalies, cross-cutting reflectors and zones of signal starvation. Water column observations including sidescan sonar, single-beam and multibeam echosounders, underwater video and photography did not conclusively identify hydrocarbon or other fluid seepage. Strong currents encountered during parts of the survey may have interfered with the direct detection of seeps in the water column. While no active signs of seepage were observed, the geochemical and biological sampling undertaken will aid in baseline environmental investigations for this region. The data collected during the survey are available for free download from the Geoscience Australia website.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to the ship-based Sub-Bottom Profiler (SBP) SEGY-format line data (ie survey GA-0345) acquired within the survey areas.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This data package brings together a suite of datasets and documents which describe the seabed environments and shallow geology of the Caswell Sub-basin, Browse Basin, Western Australia.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to standard Geotek multi-sensor core logger data from piston cores collected on the survey. Please follow link to manual for further information.