From 1 - 6 / 6
  • <p>This dataset contains identifications of polychaetes collected during surveys on the RV Solander in northern Australia: SOL4934 (27 August-24 September, 2009) , SOL5117 (30 July-27 August, 2010), SOL5463 (3-31 May 2012), and SOL5650 (12 September-6 October 2012). Sediment was collected with a Smith McIntyre grab or boxcore and elutriated over a 500um sieve. Elutriated material was then sorted back at Geoscience Australia, and all polychaetes were removed and sent to the Museum and Art Gallery of the Northern Territory (MAGNT). Chris Glasby and Charlotte Watson taxonomically identified each animal to the lowest possible level, differentiating species using established names and operational taxonomic units (OTUs). Specimens are lodged at the MAGNT. See relevant post-survey reports (GA Records 2010/09, 2011/08, 2012/66 and 2013/38) for further details on survey methods and specimen acquisition. This dataset is published with the permission of the CEO, Geoscience Australia. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • This is a collection of multimedia products of data visualisations showing sea floor terrain in the MH370 search area and associated public communications regarding the search and Phase 1 data release. The video flythroughs and data visualisations were developed from a sample of bathymetric data from Phase 1 collected as part of the search for missing Malaysia Airlines flight MH370. This includes all visualisations (images and videos) used in the 'Data behind the search for MH370' Story Map. This also contains the translated versions of the MH370 Story Map on ESRIOnline ("the Data behind the search for MH370") into Malay and Chinese.

  • This video is a compilation of three short data visualisations showing sea floor terrain in the MH370 search area. The visualisations were developed from a sample of bathymetric data collected as part of the search for missing Malaysia Airlines flight MH370.

  • Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially highly suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA334) was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Vlaming Sub-basin that may extend up to the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This research addresses key questions on the potential for containment of CO2 in the Early Cretaceous Gage Sandstone (the basin's proposed CO2 storage unit) and the regional integrity of the South Perth Shale (the seal unit that overlies the Gage Sandstone). This dataset comprises %carbonate and specific surface area of seabed sediments.

  • This flythrough highlights shallow and mesophotic seabed environments of Elizabeth and Middleton Reefs, located within the Lord Howe Marine Park. These reefs are unique because they are the southern-most platform reefs in the world and host a diverse range of tropical, sub-tropical and temperate marine species. High-resolution multibeam bathymetry data and seafloor imagery used in this flythrough was acquired by the Marine Biodiversity Hub, during the period 31 January to 6 February 2020 on board the Australian Maritime College vessel, TV Bluefin. Participating agencies included Geoscience Australia, the Institute for Marine and Antarctic Studies (University of Tasmania), the Australian Centre for Field Robotics (University of Sydney) through their involvement with the Integrated Marine Observing System (IMOS), NSW Department of Primary Industries and Parks Australia. The specific aim of the survey was to fill knowledge gaps on the distribution, extent and structure of seabed habitats and associated sessile and mobile fauna in the lagoon and mesophotic shelves of Elizabeth (Recreational Use Zone) and Middleton (National Park Zone) Reefs, using a suite of national standard survey tools and best practice sampling procedures. Data acquisition for the project included seabed mapping using multibeam sonar (Kongsberg EM 2040C HD, 300 kHz), seabed imagery acquisition by Autonomous Underwater Vehicles (AUV Sirius and AUV Nimbus), sediment samples, and imagery of demersal fish communities by stereo-baited remote underwater videos (stereo-BRUVs). This work was undertaken by the Marine Biodiversity Hub, a collaborative partnership supported through funding from the Australian Government’s National Environmental Science Program (NESP), and Parks Australia. AUV data was sourced from Australia’s Integrated Marine Observing System (IMOS) – IMOS is enabled by the National Collaborative Research Infrastructure Strategy (NCRIS). It is operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent. This multimedia product is published with the permission of the CEO, Geoscience Australia.

  • Marine seismic surveys are a fundamental tool for geological mapping, including the exploration for offshore oil and gas resources, but the sound generated during these surveys is an acute source of noise in the marine environment. Growing concern and increasing scientific evidence about the potential impacts of underwater noise associated with marine seismic surveys presents an interdisciplinary challenge to multiple sectors including government, industries, scientists and environmental managers. To inform this issue, Geoscience Australia, in collaboration with Curtin University and CSIRO, published a literature review (Carroll et al. 2017) that summarised 70 peer-reviewed scientific studies that investigated the impacts of impulsive low-frequency sound on marine fish and invertebrates. Here we provide an updated, critical synthesis of recently published data to ensure that the Australian governments’ understanding of the potential impacts of seismic surveys on fisheries and the broader marine environment remains current. A significant body of scientific research into the effects of marine seismic sounds on the marine environment has been undertaken over the past four years and scientific knowledge in this area is continuing to improve. This is partly due to increased sophistication of experimental designs that integrate the controlled aspects of laboratory studies, with field-based (before-after-control-impact) studies. However, there remain several research issues and challenges associated with progressing our understanding of the full impact of marine seismic surveys on fisheries and the marine environment. These include the need to broaden the research to cover a wider range of marine species, and to expand our understanding to impacts at the population and ecosystem scale, rather than the individual organism. There is also a continued need for improved standardisation in terminology and measurement of sound exposure. To address the research gaps and issues, Geoscience Australia recommends measures including: 1) undertaking additional multidisciplinary co-designed scientific research to examine short and long term impacts on important life stages of key species (including protected and commercially important species); 2) gathering robust environmental baselines and time-series data to account for spatiotemporal variability in the marine environment and to help inform management and monitoring; 3) continuing to develop and refine standards for quantifying sound exposure; 4) modelling population and ecosystem consequences, and; 5) further studying the interaction of seismic signals with other stressors to better assess cumulative impacts. If applied these recommendations may advance the scientific evidence-base to better inform stakeholder engagement, environmental impact assessment and management of the potential impacts of seismic surveys on fisheries and the marine environment.