From 1 - 10 / 30
  • Here we demonstrate a workflow for the development of a local, corrected wind field for severe Tropical Cyclone (TC) Debbie. We combine modelling with corrections based on observations, and local wind effects including topography, land cover, shielding and direction to provide the best estimate of actual wind speeds. This is important, as wind speed observations are sparse, and do not necessarily provide even coverage of the TC landfall region. The final corrected wind field records the maximum 0.2 second wind gust, at 10 metres above ground, throughout the lifetime of TC Debbie, and provides a best estimate of maximum wind gust speeds associated with TC Debbie. Through the development of this workflow we will demonstrate the importance of observational data for validating wind field modelling outputs, and highlight the usefulness of James Cook University’s mobile anemometers for collecting wind speed data where gaps exist in the Bureau of Meteorology’s automatic weather station network. We identify the limitations in the availability of national land cover datasets at high resolution, and demonstrate the development of a fit-for-purpose land cover dataset using GA’s Digital Earth Australia Landsat archives (Lewis et al. 2017). This report and the accompanying datasets have been released with the aim of showcasing a method, which can be refined by others to develop a standard methodology for the production of local TC wind fields. This workflow can be applied in the same way following future TC events to support the post-disaster field surveys that are routinely carried out by a range of parties following a severe TC making landfall. The local wind fields, combined with the damage surveys ultimately help to refine our vulnerability models of housing stock in Australia.

  • Australian Community Climate and Earth-System (ACCESS) Numerical Weather Prediction (NWP) data is made available by the Bureau of Meteorology for registered subscribers such as GA. ACCESS-C3 (City) model is a forecast-only model performed every 6 hours and consists of grid coordinates covering domains around Sydney, Victoria and Tasmania, Brisbane, Perth, Adelaide and Darwin. ACCESS Impact Modelling (ACCESS-IM) System utilise information from ACCESS-NWP on the forecast wind gust speeds ground surface (single-level) at 10 metres, simulated by the ACCESS-C3 model, for the time period of 0-12, 12-24, 24-36, 0-36.

  • The National Hazard Impact Risk Service for Tropical Cyclone Event Impact provides information on the potential impact to residential separate houses due to severe winds. The information is derived from Bureau of Meteorology tropical cyclone forecast tracks, in combination with building location and attributes from the National Exposure Information System and vulnerability models to define the level of impact. Impact data is aggregated to Statistical Area Level 1, categorised into five qualitative levels of impact.

  • Tropical cyclone scenario prepared for Tonga National Emergency Management Office (NEMO) as part of the PacSAFE Project (2016-2018)

  • The Bushfire Attack Level Toolbox provides access to ArcGIS geoprocessing scripts that calculate the Bushfire Attack Level (BAL) as per Method 1 in AS3959-2009. BAL is a measure of the severity of a building's potential exposure to ember attack, radiant head and direct flame contact. It is defined in AS3959-2009 to serve as a basis for establishing the requirements for construction to improve protection of building elements from attack by bushfire. In the BAL Toolbox, the calculation method (as defined in AS3959-2009) is adapted to be applied spatially. Input information required are a digital elevation model and classified vegetation data. The BAL Toolbox allows users to calculate BAL for small regions, without the need for large computational resources or for executing code in command-line environments. This will provide stakeholders with the ability to efficiently generate rigorous and robust maps of Bushfire Attack Level that adhere to the national standard, compared to products generated by manual techniques. The BAL Toolbox code is written in Python, utilising the ArcGIS "arcpy" module to enable easy reading/writing of raster data and to provide methods for a graphical user interface in the standard ArcGIS tool style. The BAL Toolbox User Guide provides users an overview of the Toolbox, instructions on installation, any customisations execution and evaluation of results.

  • A metadata report for the atmospheric monitoring station installed in Arcturus, south of Emerald in central Queensland. The station was installed for baseline atmospheric monitoring to contribute to emission modelling spanning 2010-2014. The station included compositional gas analysers, supporting meteorological sensors and an eddy covariance flux tower. The metadata covered in the report include: the major variables measured by each instrument, the data duration and frequency, data accuracy, calibration and corrections, the location the data is stored, and the primary contact for the data.

  • The Atmospheric Tomography software is a command line tool written in python to estimate the emission rate of a point source from concentration data. It implements an extension of the Bayesian inversion method. Bhatia, S., Feitz, A. and Francis, A. (2017) Atmospheric Tomography, GitHub repository, https://github.com/GeoscienceAustralia/atmospheric_tomography_laser

  • Tropical cyclone scenario prepared for Tonga National Emergency Management Office (NEMO) as part of the PacSAFE Project (2016-2018)

  • Tropical cyclone Gita impacted the Kingdom of Tonga in February 2018, causing significant damage across the main island of Tongatapu. This dataset is a best estimate of the maximum local gust wind speed across Tongatapu, based on the best-available track information, elevation and land cover data. The data represents the maximum 0.2 second, 10-metre above ground level wind speed at (approximately) 25 metre horizontal resolution. The wind field was generated using Geoscience Australia's Tropical Cyclone Risk Model (https://github.com/GeoscienceAustralia/tcrm), and Wind Multipliers code (https://github.com/GeoscienceAusralia/Wind_Multipliers). TC Gita track was sourced from the Joint Typhoon Warning Center (http://www.metoc.navy.mil/jtwc/jtwc.html)

  • The collection of products released for the 2018 National Tropical Cyclone Hazard Assessment (TCHA18). - 2018 National Tropical Cyclone Hazard Assessment - 2018 National Tropical Cyclone Hazard Assessment Stochastic Event Catalogue - 2018 National Tropical Cyclone Hazard Assessment Hazard Map - Tropical Cyclone Risk Model