From 1 - 10 / 2493
  • Geoscience Australia Marine Survey 302: Final Survey Report. by Fugro Robertson Inc, Nov. 2006 - Jan. 2007.

  • Discusses reasons to use the Australian Stratigraphic Units Database (ASUD), and new features of the web query page and reports

  • The Australian National Gravity Database (ANGD) contains over 1.8 million gravity observations from over 2,000 surveys conducted in Australia over the last 80 years. Three processes are required to correct these observations for the effects of the surrounding topography: firstly a Bouguer correction (Bullard A), which approximates the topography as an infinite horizontal slab; secondly a correction to that horizontal slab for the curvature of the Earth (Bullard B); and thirdly a terrain correction (Bullard C), which accounts for the undulations in the surrounding topography. These three corrections together produce complete bouguer anomalies. Since February 2008, a spherical cap bouguer anomaly calculation has been applied to data extracted from the ANGD. This calculation applies the Bullard A and Bullard B corrections. Terrain corrections, Bullard C, have now been calculated for all terrestrial gravity observations in the ANGD allowing the calculation of complete bouguer anomalies. These terrain corrections were calculated using the Shuttle Radar Topography Mission 3 arc-second digital elevation data. The complete bouguer anomalies calculated for the ANGD provide users of the data with a more accurate representation of crustal density variations through the application of a more accurate Earth model to the gravity observations.

  • Case Study: GeoFrame software helps Geoscience Australia provide quick access to 2D and 3D seismic survey data within newly released license/permit in support of successful Australian Acreage Release bidding rounds

  • Open Geospatial Consortium (OGC) web services offer a cost efficient technology that permits transfer of standardised data from distributed sources, removing the need for data to be regularly uploaded to a centralised database. When combined with community defined exchange standards, the OGC services offer a chance to access the latest data from the originating agency and return the data in a consistent format. Interchange and mark-up languages such as the Geography Markup Language (GML) provide standard structures for transferring geospatial information over the web. The IUGS Commission for the Management and Application of Geoscience Information (CGI) has an on-going collaborative project to develop a data model and exchange language based on GML for geological map and borehole data, the GeoScience Mark-up Language (GeoSciML). The Australian Government Geoscience Information Committee (GGIC) has used the GeoSciML model as a basis to cover mineral resources (EarthResourceML), and the Canadian Groundwater Information Network (GIN) has extended GeoSciML into the groundwater domain (GWML). The focus of these activities is to develop geoscience community schema that use globally accepted geospatial web service data exchange standards.

  • Crucial elements for assessing earthquake risk are exposure and vulnerability. In assessing earthquake risk to the Australian built environment we need to know what is exposed to earthquake ground motion and also how vulnerable the exposed infrastructure is to the severity of shaking. While central business district (CBD) buildings make up a relatively small proportion of Australia's built environment their function and the business activity they support is vital to Australia's economy. This paper describes an ongoing effort by the Australian Government to undertake engineering and architectural surveys of buildings within state capital CBDs. With funding from the Attorney-General's Department Geoscience Australia has recently completed a survey of the Melbourne CBD and will complete surveys of the Sydney, Adelaide and Brisbane CBDs this financial year. Survey teams comprise a structural engineer and a GIS operator who populates survey fields on a handheld computer. Approximately 90 survey data fields are incorporated in the template to enable capture of the variety in building features. The fields cover building characteristics that are understood to influence earthquake vulnerability. A summary of the survey activity undertaken to date is presented here along with some examples of the type of data that is being collected.

  • It is impractical for a single agency in Australia to hold responsibility for maintaining a national landslide database. Geoscience Australia has successfully demonstrated the benefits of adopting information management strategies as one solution in bringing local, regional and national scale landslide data together. In the first time that networked service oriented interoperability has been applied to a natural hazards domain, Australia now has an up-to-date central landslide database that makes full use of diverse data across three levels of government . The approach is centred upon a 'common data model' that addresses aspects of landslides captured by different agencies. The methodology brings four distinct components together: a landslide application schema; a landslide domain model; web service implementations and a user interface. Sharing and exchanging data more efficiently through an interoperable approach ensures that full value is made of available information, and that responsibility for collecting and maintaining this data is shared across all agencies. Specific-purpose data not only continues to serve the needs of individual database custodians, but also now serves a broader need. Such a system establishes the foundation for a very powerful and coordinated information resource in Australia through its ability to collate and characterise large volumes of information, and provides a suitable basis for greater investment in data collection. At a minimum the pilot project provides Australia with a framework for a centralised national landslide inventory, which can connect other available landslide databases. There is also considerable capacity for this approach to provide State Governments with a simple way to compile and maintain their own state-wide databases, and to extend the approach across other natural hazard databases and integrate data from other domains.

  • Examination of developing geothermal exploration techniques and a geothermal play systems framework in Australia.

  • With the increasing emphasis on electronic rather that paper products, the need for adequate metadata is becoming more and more pressing. The new AGSO Catalog is designed to address this problem at the corporate level. Developed from the AGSO Products Database, the AGSO Catalog is designed to encompass most of AGSOs outputs, datasets and resources. It does this with the help of various intranet and Web interfaces. Projects or authors must initiate Catalog entries, for without an acceptable metadata a product cannot be sold by the Sales Centre, or permission to publish will not be granted. The Catalog is the key to future systems of information distribution and sales. It will permit us to go directly from the metadata to the electronically stored objects, thus enabling automated information distribution and electronic commerce.

  • Quarterly column on issues in Australian stratigraphy