From 1 - 10 / 1740
  • The IAG Working Group (WG) 'Integration of Dense Velocity Fields in the ITRF' was created in 2011 as follow-up of the WG 'Regional Dense Velocity Fields' (2007-2011). The goal of the WG group is to densify the ITRF (International Terrestrial Reference Frame) using regional GNSS solutions as well as global solutions. This was originally done by combining several cumulative position/velocity solutions as well as their residual position time series submitted to the WG by the IAG regional reference frame sub-commissions (APREF, EUREF, SIRGAS, NAREF) and global (ULR) analysis centers. However, several test combinations together with the comparison of the residual position time series demonstrated the limitations of this approach. In June 2012, the WG decided to adopt a new approach based on a weekly combination of the GNSS solutions. This new approach will mitigate network effects, have a full control over the discontinuities and the velocity constraints, manage the different data span and derive residual position time series in addition to a velocity field. All initial contributors have agreed to submit weekly solutions and in addition initial contacts have been made with other sub-commissions particularly Africa in order to extent the densified velocity field to all continents. More details on the WG are available from http://epncb.oma.be/IAG/.

  • In 1994, the United Nations Regional Cartographic Conference for Asia and the Pacific resolved to establish a Permanent Committee comprising of national surveying and mapping agencies to address the concept of establishing a common geographic information infrastructure for the region. This resolution subsequently led to the establishment of the Permanent Committee for GIS Infrastructure for the Asia and Pacific (PCGIAP). One of the goals of the PCGIAP was to establish and maintain a precise understanding of the relationship between permanent geodetic stations across the region. To this end, campaign-style geodetic-GPS observations, coordinated by Geoscience Australia, have been undertaken throughout the region since 1997. In this presentation, we discuss the development of an Asia Pacific regional reference frame based on the PCGIAP GPS campaign data, which now includes data from 417 non-IGS GPS stations and provides long term crustal deformation estimates for over 200 GPS stations throughout the region. We overview and evaluate: our combination strategy with particular emphasis on the alignment of the solution onto the International Terrestrial Reference Frame (ITRF); the sensitivity of the solution to reference frame site selection; the treatment of regional co-seismic and post-seismic deformation; and the Asia-Pacific contribution to the International Association of Geodesy (IAG) Working Group on "Regional Dense Velocity Fields". The level of consistency of the coordinate estimates with respect to ITRF2005 is 6, 5, 15 mm, in the east, north and up components, respectively, while the velocity estimates are consistent at 2, 2, 6 mm/yr in the east, north and up components, respectively.

  • The national geodetic program in Australia is undertaken by the National Geospatial Reference System (NGRS) Section within Geoscience Australia. The NGRS is a continually evolving system of infrastructure implemented through the existing geodetic techniques such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI). The NGRS serves the broader community by providing an accurate foundation for positioning, and consequently all spatial data, against which every position in Australia is measured and can be legally traced. In Australia, the sparsity of geodetic infrastructure has limited the developments of geodetic applications. For instance, the Geocentric Datum of Australia 1994 (GDA94) was based on observations (1992 - 1994) from a sparse network of Continuously Operating Reference Station (CORS) called the Australian Fiducial Network (AFN). Since that time the demand for higher accuracies has resulted in GDA94 no longer adequately serving user demand. The adoption of a fully dynamic datum will ensure that Australians can use positioning technology to its fullest capability, whereas at present when using GDA94 they are limited to the accuracy that was achievable in 1994 when GDA94 was created. Consequently, national infrastructure development programs, such as AuScope, have been implemented to improve the geodetic accuracies by contributing to the next generation of the Global Geodetic Observing System (GGOS). This presentation reviews the national geodetic activities in Australia, especially the AuScope program, a recent enhancement to the Australian geodetic infrastructure.

  • Advice to National Measurement Institute regarding update to the recognized-value standard of measurement for position, June 2011

  • Tide gauge data forms the basis for determining global or local sea level rise with respect to a global geocentric reference frame. Data from repeated precise levelling connections between the tide gauge and a series of coastal and inland benchmarks, including a Continuous GPS (CGPS) benchmark, is used to determine the stability of tide gauges at 12 locations in the South Pacific. The method for determining this is based on a constant velocity model which minimises the net movement amongst a set of datum benchmarks surveyed since the installation of the tide gauges. Tide gauges were found to be sinking, relative to the CGPS benchmark, in Pohnpei (FSM), Samoa, Vanuatu, Tonga, Nauru, Tuvalu, Fiji and Cook Is; listed in order of the sinking rate, with a maximum of -1.01 - 0.63 mm/yr at Pohnpei (FSM) and a minimum of -0.03 - 0.81mm/yr at Cook Is. The tide gauge was rising, relative to the CGPS benchmark, in Solomon Is, Manus Is (PNG), Kiribati and Marshall Is, with a maximum of 3.12 - 0.49mm/yr in Solomon Is and a minimum of 0.01 - 0.91mm/yr in Marshall Is. However, these estimates are unreliable for the Solomon Is and Marshall Is, which have recently established CGPS benchmarks and have been surveyed less than 3 times. In Tonga and Cook Is, the tide gauge was found to be disturbed or affected by survey errors whereas the Vanuatu results were affected by earthquakes. It was also found that the constant velocity model did not fit the observations at the tide gauges in Tonga, Cook Is, Fiji, Marshall Is and Vanuatu, which had large variations in their velocities. This is an indicator of the high frequency (short period) motion of the tide gauge structure, which cannot be measured by the levelling method since these have a higher frequency than the time interval between levelling surveys.

  • This research utilises metadata from GA's centralised metadata store containing the history of the equipment changes which have taken place at all GNSS stations; such as antenna or receiver swaps, firmware upgrades and removal/ alteration of antenna domes and cables. Several change detection algorithms have been implemented for automatic detection of discontinuities in the coordinate time series. Once offsets are detected, their position in time is correlated with equipment changes or earthquake occurrences nearby the station. If a correlation is found and the offset is visibly evident, the offset is introduced into a database. This information is used in the routine combination of weekly SINEX solutions using the CATREF software to produce an enhanced set of coordinates and velocities. It is shown that after cleansing the offsets in time series using this approach, the quality of the combined APREF solution is improved in terms of WRMS. By analysing time series coordinates at a few stations using CATS software, it is shown that the uncertainty of velocity estimates is improved after offsets are detected and removed from the time series.

  • The new Australian geodetic VLBI network operated by the University of Tasmania (UTAS) started regular observations in October, 2010. Three 12-meter "Patriot" radio telescopes are dedicated to the improvement of the celestial and terrestrial reference frames in the southern hemisphere. We present first results from the analysis of an eight-month set of geodetic VLBI data. The data were processed within a global VLBI solution by the least squares collocation method using the OCCAM software. The geodetic positions of the AuScope radio telescopes were estimated with accuracy less than 10 millimetres, and the first sign of their motion due to tectonic plate movement was indicated.

  • AUSPOS, Geoscience Australia's online GPS positioning service, has now been in worldwide use since 2000 and has processed over 150,000 user data files. In 2011, the AUSPOS service was fully upgraded to use the Bernese Software as the processing engine together with more sophisticated GPS data analysis strategies, new ITRF to GDA transformations and the recently developed the AUSGEIOD09 model. In this presentation, we will briefly overview the AUSPOS2 system including the improved modelling and analysis strategies employed. Then, we will present test results for AUSPOS2 using 1, 2, 6, 12, 24 hours of data from 232 IGS2008 core stations as well stations from the Asia Pacific Reference Frame (APREF) network within mainland Australia using the IGS final, rapid and ultra rapid products, respectively. Preliminary tests using 24 hours data show that coordinate differences between AUSPOS solutions and APREF weekly solutions are within a millimetres level for all three components.

  • This report refers to the 5th Local Monitoring Survey completed at the Pohnpei (POHN) continuous GPS (CGPS) station on Saturday 15 August 2009

  • In a collaborative effort with the regional sub-commissions within IAG sub-commission 1.3 'Regional Reference Frames', the IAG Working Group (WG) on 'Regional Dense Velocity Fields' (see http://epncb.oma.be/IAG) has made a first attempt to create a dense global velocity field. GNSS-based velocity solutions for more than 6000 continuous and episodic GNSS tracking stations, were proposed to the WG in reply to the first call for participation issued in November 2008. The combination of a part of these solutions was done in a two-step approach: first at the regional level, and secondly at the global level. Comparisons between different velocity solutions show an RMS agreement between 0.3 mm/yr and 0.5 mm/yr resp. for the horizontal and vertical velocities. In some cases, significant disagreements between the velocities of some of the networks are seen, but these are primarily caused by the inconsistent handling of discontinuity epochs and solution numbers. In the future, the WG will re-visit the procedures in order to develop a combination process that is efficient, automated, transparent, and not more complex than it needs to be.