External Publication
Type of resources
Keywords
Publication year
Scale
Topics
-
This preliminary report will provide a geochemical and ionic characterisation of groundwater, to determine baseline conditions and, if possible, to distinguish between different aquifers in the Laura basin. The groundwater quality data will be compared against the water quality guidelines for aquatic ecosystem protection, drinking water use, primary industries, use by industry, recreation and aesthetics, and cultural and spiritual values to assess the environmental values of groundwater and the treatment that may be required prior to reuse or discharge.
-
Williams et al. (2009) report on new multibeam sonar bathymetry and underwater video data collected from submarine canyons and seamounts on Australia's southeast continental margin to 'investigate the degree to which geomorphic features act as surrogates for benthic megafaunal biodiversity' (p. 214). The authors describe what they view as deficiencies in the design of the Marine Protected Areas (MPAs) in the southeast region of Australia, in which geomorphology information was employed as a surrogate to infer regional-scale patterns of benthic biodiversity. This comment is designed to support and underscore the importance of evaluating MPA designs and the validity of using abiotic surrogates such as geomorphology to infer biodiversity patterns, and seeks to clarify some of the discrepancies in geomorphic terminologies and approaches used between the original study and the Williams et al. (2009) evaluation. It is our opinion that the MPA design criteria used by the Australian Government are incorrectly reported by Williams et al. (2009). In particular, we emphasise the necessity for consistent terminology and approaches when undertaking comparative analyses of geomorphic features. We show that the MPA selection criteria used by the Australian Government addressed the issues of false homogeneity described by Williams et al. (2009), but that final placement of MPAs was based on additional stakeholder considerations. Finally, we argue that although the Williams et al. (2009) study provides valuable information on biological distributions within seamounts and canyons, the hypothesis that geomorphic features (particularly seamounts and submarine canyons) are surrogates for benthic biodiversity is not tested explicitly by their study.
-
Changes in microbial diversity and population structure occur as a result of increased nutrient loads and knowledge of microbial community composition may be a useful tool for assessing water quality in coastal ecosystems. However, the ability to understand how microbial communities and individual species respond to increased nutrient loads is limited by the paucity of community-level microbial data. The microbial community composition in the water column and sediments was measured across tropical tidal creeks and the relationship with increased nutrient loads assessed by comparing sewage-impacted and non-impacted sites. Diversity-function relationships were examined with a focus on denitrification and the presence of pathogens typically associated with sewage effluent tested. Significant relationships were found between the microbial community composition and nutrient loads. Species richness, diversity and evenness in the water column all increased in response to increased nutrient loads, but there was no clear pattern in microbial community diversity in the sediments. Water column bacteria also reflected lower levels of denitrification at the sewage-impacted sites. The genetic diversity of pathogens indicated that more analysis would be required to verify their status as pathogens, and to develop tests for monitoring. This study highlights how microbial communities respond to sewage nutrients in a tropical estuary. Estuarine, Coastal and Shelf Science
-
Now in its third year, Geoscience Australia's Onshore Energy Security Program has acquired several suites of regional geological and geophysical data. The data include several deep seismic reflection surveys that have been designed to image: - basement provinces with high geothermal gradients that may contain Uranium enrichments and are potential candidates for geothermal energy, - geological terrane boundaries and - sedimentary basins that are known to host petroleum system elements but are under-explored. Seismic signals are recorded down to 20 seconds two-way-time (TWT) which corresponds to 25-35 km depth depending on dominant lithologies. Basinal sections normally extend down to 6-8 secTWT and the data is of such high quality that any section of the seismic profile can be enlarged without significant loss of resolution. Deep reflection surveys are able to image the relationship between crystalline basement and overlying basin sequences very clearly and also allow interpretations of structural styles as well as impacts of deformational processes on the basin-fill. A new basinal section was discovered beneath the Eromanga Basin suite of sediments. Named the 'Mullangera Basin', its structural style and basement relationship seem to indicate some affinity with the Georgina Basin further west. The succession is clearly composed of several sequences that contain both fine-and coarse-grained sediments. If a geological relationship with the Georgina Basin can be ascertained, a new hydrocarbon prospective area could be delineated. Another new section was discovered beneath the Devonian section of the Darling Basin. Judging by the fast acoustic velocities the entire basin-fill sequence appears to be very dense and therefore largely non-porous and of low permeability.
-
Devonian-Carboniferous granites are widespread in Tasmania. In the east they intrude the Ordovician-Early Devonian quartzwacke turbidites of the Mathinna Supergroup, whereas the western Tasmanian granites intrude a more diverse terrane of predominantly shelf sequences, with depositional ages extending probably back to the Late Mesoproterozoic. The earliest (~400 Ma) I-type granodiorites in the east may be arc-related and pre-date the Tabberabberan Orogeny (~388 Ma), which appears to represent the juxtaposition of the two terranes. Subsequently more felsic and finally strongly fractionated I- and S-type granites were emplaced until ~373 Ma. In western Tasmania, mostly felsic and fractionated I- and S-types granites were emplaced from ~374-351 Ma, possibly in response to back-arc or post-collisional crustal extension
-
TBC
-
New SHRIMP U/Pb zircon ages of 472.2 ± 5.8 Ma and 470.4 ± 6.1 Ma are presented for the age of peak metamorphism of Barrovian migmatite units. Published U/Pb emplacement ages for Grampianage igneous units of Scotland and Ireland vary between c. 473.5 and c. 470 Ma. Magmatic advection provided significant heat for the Barrovian metamorphism, and the new U/Pb ages are consistent with attainment of peak Barrovian metamorphic temperatures during Grampian magmatism. U/Pb-calibrated 40Ar/39Ar ages for white mica from the Barrovian metamorphic series vary systematically, between c. 465 Ma for the biotite zone and c. 461 Ma for the sillimanite zone. Microstructural work on the timing of peak metamorphism has shown that metamorphism occurred progressively later with increasing peak-metamorphic grade. Younging metamorphic age with increasing metamorphic grade across the Barrovian metamorphic series requires that the sequence was cooled in the lower-grade regions while heating persisted in the high-grade regions. This thermal scenario is well explained by the presence of a large-scale extensional detachment that influenced the thermal regime by actively cooling units from above while metamorphic heating continued below the sequence. The spatio-temporal thermal pattern recorded by the Barrovian metamorphic series is consistent with regional metamorphism during crustal extension.
-
The Australian Government formally releases new offshore exploration areas at the annual APPEA conference. In 2010, thirty-one areas in five offshore basins are being released for work program bidding. Closing dates for bid submissions are either six or twelve months after the release date, i.e. 11 November 2010 and 12 May 2011, depending on the exploration status in these areas and on data availability. The 2010 Release Areas are located in Commonwealth waters offshore Northern Territory, Western Australia, and South Australia, comprising intensively explored areas close to existing production as well as new frontiers. The Westralian Superbasin along the North West Shelf continues to feature prominently and is complimented by a new frontier area in offshore SW Australia (Mentelle Basin) and by two areas in the Ceduna/Duntroon Sub-basins in the eastern part of the Bight Basin. The Bonaparte Basin is represented by three areas in the Petrel Sub-basin and two areas in the Vulcan Sub-basin. Further southwest, four large areas are being released in the outer Roebuck Basin, a significantly underexplored region. This year, the Carnarvon Basin provides 16 Release Areas of which three are located in the Beagle Sub-basin, five in the Dampier Sub-basin, five in the Barrow Sub-basin, three on the Exmouth Plateau and three in the Exmouth Sub-basin. The largest singular Release Area covers much of the Mentelle Basin in offshore SW Australia and two areas are available in the Ceduna and Duntroon sub-basins as part of South Australia's easternmost section of the Bight Basin. The 2010 Offshore Acreage Release offers a wide variety of block sizes in shallow as well as deep water environments. Area selection has been undertaken in consultation with industry, the States and Territory. As part of Geoscience Australia's Offshore Energy Security Program, new data has been acquired in offshore frontier regions parts of which are being published on the Mentelle Basin
-
The surface sedimentary record from six sediment cores collected from beneath the Amery Ice Shelf, East Antarctica, provides a unique view of the sedimentary and oceanographic processes in this sub-ice shelf setting. The composition and age of the surface sediments indicate spatial variations in ice shelf cavity-ocean interaction, which are consistent with patterns of ocean inflow and outflow modelled and observed beneath the ice shelf. Sediments within 100 km of the ice shelf front (site AM01b) show the greatest open ocean influence with a young surface age and the highest total diatom abundance, compared to older ages and lower diatom abundances at sites deeper in the cavity (AM03 to AM06). The variable marine influence between sites determines the nature of benthic communities, with seabed imagery indicating the existence of sessile suspension feeders in areas of strong marine inflow (site AM01b), while grazers, deposit feeders and a few suspension feeders occur at sites more distal from the shelf calving front where the food supply is lower (sites AM03 and AM04). Understanding the sedimentary and oceanographic processes within the sub-ice shelf environment allows better constraint of interpretations of down core sediment records, an improved understanding of the nature of biological communities in sub-ice shelf environments, and a baseline for determining the sensitivity of the system to any future changes in ocean dynamics.
-
Geoscience Australia has been acquiring deep crustal reflection seismic transects throughout Australia since the 1960s. The results of these surveys have motivated major interpretations of important geological regions, contributed to the development of continental-scale geodynamic models, and improved understanding about large-scale controls on mineral systems. Over the past five years, Geoscience Australia has acquired over 6000 km of deep crustal seismic reflection data under the auspices of the Predictive Mineral Discovery Cooperative Research Centre (pmd*CRC), Onshore Energy Security Program (OESP), AuScope Earth Imaging (part of the National Collaborative Research Infrastructure Strategy), and all mainland State and Territory governments. These seismic datasets continue to underpin fundamental research into the geodynamics of the Australian continent and provide the third dimension for pre-competitive geoscience information related to mineral and energy resources in selected provinces and basins. Regional seismic reflection surveys currently utilise three Hemi 50 or 60 vibrators at 80 m VP with 40 m group interval, resulting in 75 fold data to 20 s TWT. In-house processing is aimed at providing a whole of crust image, without sacrificing shallow detail. Gravity readings are also collected along the lines at 400 m intervals to assist integrated regional interpretations based on the seismic traverses. Magnetotelluric (MT) soundings, including both broad-band and long period, have been acquired along most traverses. MT provides an image of the conductivity of the crust which is complementary to the structural information obtained from reflection seismic. Geoscience Australia is currently developing an in-house MT processing and modelling capability.