From 1 - 1 / 1
  • Governments at the Commonwealth, State, Territory and Local level are committed to minimising the impact of natural disasters through a variety of Disaster Risk Reduction (DRR) programs. Risk analysis is one of the processes undertaken to inform DRR decision making and policy development. It involves estimating the extent and severity of one or more natural hazards, understanding the location and characteristics of the 'elements at risk' from those hazards (also known as exposure) and modelling the vulnerability and response of those elements exposed to the subject hazards. Understanding the vulnerability of buildings is crucial in risk analysis activities, as damage to buildings can have significant direct and indirect impacts on individuals, communities, economies and the functioning of society at large. The development of quality spatially-enabled information is a key activity in the risk analysis process. After demonstrating a proof of concept in 2005-2006, Geoscience Australia has led the development of exposure information for Australia via the National Exposure Information System (NEXIS). Within NEXIS, currently available spatial and non-spatial data from various sources is routinely combined, reorganised for consistency, managed and supplied to stakeholders. The products derived from NEXIS enable risk analysis specialists and policy makers to access recent exposure information they require to analyse and assess the risk posed by the hazards in Australia. At the core of NEXIS is information about buildings. There are many challenges to developing and providing reliable information about buildings across the country. Through an offer of assistance from the ACT Government, Geoscience Australia has developed an innovative and rapid method to analyse and interpret cadastral data to estimate an important exposure attribute. This presentation describes the development of the method, the resulting benefits for exposure information in the ACT and outlines how cadastral data can improve DRR outcomes across Australia.