From 1 - 10 / 196
  • The Australian Government policy is to ensure that uranium mining, milling and rehabilitation is based on world best practice standards. A best practice guide for in situ recovery (ISR) uranium mining has been developed to communicate the Australian Government's expectations with a view to achieving greater certainty that ISR mining projects meet Australian Government policy and consistency in the assessment of ISR mine proposals within multiple government regulatory processes. The guide focuses on the main perceived risks; impacts on groundwaters, disposal of mining residues, and radiation protection. World best practice does not amount to a universal template for ISR mining because the characteristics of individual ore bodies determine the best practice

  • In April 2015 Geoscience Australia (GA) acquired 908 km (full-fold) Gippsland Southern Margin Infill 2D Seismic data using Gardline's M/V Duke. The survey was designed to better resolve the Foster Fault System and provide better integration between the GDPI10 2D seismic survey and the numerous existing surveys in the central deep. The data was processed using pre-stack depth migration with deghosting.

  • Disaster management is most effective when it is based on evidence. Evidence-based disaster management means that decision makers are better informed, and the decision making process delivers more rational, credible and objective disaster management outcomes. To achieve this, fundamental data needs to be translated into information and knowledge, before it can be put to use by the decision makers as policy, planning and implementation. Disaster can come in all forms: rapid and destructive like earthquakes and tsunamis, or gradual and destructive like drought and climate change. Tactical and strategic responses need to be based on the appropriate information to minimise impacts on the community and promote subsequent recovery. This implies a comprehensive supply of information, in order to establish the direct and indirect losses, and to establish short and long term social and economic resilience. The development of the National Exposure Information System (NEXIS) is a significant national project being undertaken by Geoscience Australia (GA). NEXIS collects, collates, manages and provides the information required to assess multi-hazard impacts. Exposure information may be defined as a suite of information relevant to all those involved in a natural disaster, including the victims, the emergency services, and the policy and planning instrumentalities.

  • Update on petroleum in Australia during 2008

  • short discussion on why and how to define lithostratigraphic units, and where to find information on describing sequence stratigraphic and regolith units.

  • One page article discussing aspects of Australian stratigraphy; this article discusses new unit definitions, ne regional publications and changes to the membership of the Australian Stratigraphy Commission.

  • Less than one year after the spectacular calving of the Mertz Glacier tongue, scientists were collecting the first ever images of the seafloor where the glacier tongue once sat.

  • One page article discussing aspects of Australian stratigraphy; this article discusses practical Australian solutions to igneous nomenclature and the indexing of relevant Antarctic units

  • The Lambert-Amery System is the largest glacier-ice shelf system in East Antarctica, draining a significant portion of the ice sheet. Variation in ice sheet discharge from Antarctica or Greenland has an impact on the rate of change in global mean sea level; which is a manifestation of climate change. In conjunction with a measure of ice thickness change, ice sheet discharge can be monitored by determining the absolute velocities of these glaciers. In order to demonstrate the capability of the DORIS system to determine glacier velocities, Geoscience Australia undertook a Pilot Project under the auspices of the International DORIS Service. A DORIS beacon was deployed on the Sorsdal (November 2001 - January 2002 and November 2003 - January 2004) and Mellor (December 2002 - January 2003) glaciers. The DORIS data, transmitted from the autonomously operating ground beacon for each satellite pass, were stored in the receiver on-board the satellite and later downlinked to the DORIS control centres for processing. This paper describes the campaigns that were conducted at the Sorsdal and Mellor glaciers, the data processing standards for modelling the Doppler measurements, precise orbit determination of the satellites using the data from the globally distributed DORIS network, tracking station position and reference frame modelling, the point positioning mode employed for determining the position and velocities of the transmitting beacon antennas located on the glaciers and provides the velocity estimates that have been determined from the analysis of these tracking data. For the Sorsdal 2001/2002 campaign, using SPOT-4 data only, the measured effective horizontal ice motion was estimated to be 30 ± 0.4 cm/day (azimuth of N246°E.± 1º). The inferred velocities for the Sorsdal 2003/2004 campaign, using SPOT-4 and SPOT-5 data, was 5.7 ± 0.8 cm/day (azimuth of N264°E ± 7.5°) for the first eight days and 11.4 ± 1.4 cm/day (azimuth of N241°E ± 1.5°) for the subsequent 21 days. There was a noted decrease in the inferred velocities between the beginning and the end of the observing period. A sub-division of the latter 21 day observing period into three segments showed a decrease in 2-D velocity from 18.3 ± 0.7 cm/day to 11.2 ± 0.7 cm/day and then to 7.4 ± 0.9 cm/day for the first, second and third segments respectively. In comparison, a GPS derived velocity over the time-span of the 2001/2002 Sorsdal campaign gave a mean ice flow rate of 31 cm/day. The GPS velocity was derived from two daily position estimates 65 days apart. The DORIS determination from 26 days of continuous SPOT-4 and SPOT-5 data compared well with the GPS derived velocity. For the 2002/2003 Mellor glacier campaign, using SPOT-4 and SPOT-5 data, the estimated average ice velocity was 104 ± 25 cm/day (azimuth of N33°E ± 0.1º); which compared well with an InSAR derived velocity of between 110 and 137 cm/day. The point positioning technique as implemented in this study was further validated and assessed by replicating the computational process to determine the position and velocity of the permanent International DORIS Service site at Terre Adélie, Antarctica. Through these experiments, it has been successfully demonstrated that the DORIS system is capable of determining the velocities of glaciers with an accuracy of a few cm/day over a period of several weeks; operating in remote regions in an autonomous mode. With an increasing number of DORIS-equipped satellites and multiple daily passes, it has the potential to measure glacial velocities at a high temporal resolution (sub-daily).

  • Monitoring is a regulatory requirement for all carbon dioxide capture and geological storage (CCS) projects to verify containment of injected carbon dioxide (CO2) within a licensed geological storage complex. Carbon markets require CO2 storage to be verified. The public wants assurances CCS projects will not cause any harm to themselves, the environment or other natural resources. In the unlikely event that CO2 leaks from a storage complex, and into groundwater, to the surface, atmosphere or ocean, then monitoring methods will be required to locate, assess and quantify the leak, and to inform the community about the risks and impacts on health, safety and the environment. This paper considers strategies to improve the efficiency of monitoring the large surface area overlying onshore storage complexes. We provide a synthesis of findings from monitoring for CO2 leakage at geological storage sites both natural and engineered, and from monitoring controlled releases of CO2 at four shallow release facilities - ZERT (USA), Ginninderra (Australia), Ressacada (Brazil) and CO2 field lab (Norway).