From 1 - 10 / 624
  • Project In 2013, Geoscience Australia commissioned AAM to undertake a LiDAR survey with accompanying field survey and ortho imagery capture over the Macintyre river region comprising approx 7,500 square kilometres. Ref Deed CMC G3298 Contract CMC G4417. Collection of both LiDAR and simultaneous and near simultaneous imagery utilising the Optech ALTM Pegasus HA500 sensor and the Vision Map A3 digital camera occurred from 06 November 2013 to 17th December 2013 with a total of 20 LiDAR flights plus a very small infill (LiDAR only) flight on 17th March 2014. The LiDAR was controlled from existing CORS GPS stations and 3 newly setup reference GPS station. 158 test point sites that overlapped the LiDAR were surveyed by AAM using Kinematic Smartnet GPS. The specification for this survey was provided in the aforementioned contract document Data The LiDAR, Ortho and field surveys conform in accuracy, format and nomenclature conform to the above specification. The ortho imagery comprises 0.20m GSD RGB Geotiff imagery in Geotiff and ECW formats. The area spans MGA zones 55 and 56 products have been generated with an overlap as per the specification and nomenclature advice from the client.

  • The Bureau of Mineral Resources, Geology and Geophysics (BMR) did a reconnaissance seismic survey in the central portion of the Bowen Basin in November, 1960. The objectives of the survey were to determine the structure of the Basin and the thickness of sediments by traversing from the western margin of the Basin near Anakie to the eastern margin east of Duaringa. Two other seismic surveys conducted in this Bowen Basin are Cooroorah Anticline seismic survey in 1959 (survey L037) and 254km seismic survey near the towns of Duaringa and Blackwater (survey L129).

  • These data represent the OZCHRON database of age determinations on Australian rock samples as determined by the uranium-lead SHRIMP (Senstive High Resolution Ion MicroProbe) method. These data are a snapshot of the database at the "Ending-Date", although entry into the database is continuous.

  • Processed Stacked and Migrated SEG-Y seismic data and section images for the Youanmi Deep Crustal Seismic Survey. This survey was conducted under a National Geoscience Agreement with the Western Australia Geological Survey. Funding was through the Onshore Energy Security Program and Western Australia's Exploration Incentive Scheme. The objective of the survey was to image the northwest Yilgarn Craton to the Ida Fault crossing the Meekatharra structural zone, a focus of gold mineralization. Data are supplied as SEG-Y files, TIFF and PDF images. Raw data for this survey are available on request from clientservices@ga.gov.au

  • Long-period magnetotelluric (MT) data allow geoscientists to investigate the link between mineralisation and lithospheric-scale features and processes. In particular, the highly conductive structures imaged by MT data appear to map the pathways of large-scale palaeo-fluid migration, the identification of which is an important element of several mineral system models. Given the importance of these data, governments and academia have united under the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) to collect long-period MT data across the continent on a ~55 km-spaced grid. Here, we use AusLAMP data to demonstrate the MT method as a regional-scale tool to identify and select prospective areas for mineral exploration undercover. We focus on the region between Tennant Creek in the Northern Territory and east of Mount Isa in Queensland. Our results image major conductive structures up to 150 km deep in the lithosphere, such as the Carpentaria Conductivity Anomaly east of Mount Isa. This anomaly is a significant lithospheric-scale conductivity structure that shows spatial correlations with a major suture zone and known iron oxide–copper–gold deposits. Our results also identify similar features in several under-explored areas that are now considered to be prospective for mineral discovery. These observations provide a powerful means of selecting frontier regions for mineral exploration undercover.. <b>Citation:</b> Duan, J., Kyi, D., Jiang, W. and Costelloe, M., 2020. AusLAMP: imaging the Australian lithosphere for resource potential, an example from northern Australia. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • Victor Harbour Lidar

  • The coverage of this dataset is over the WestNarranLake region . The C3 LAS data set contains point data in LAS 1.2 format sourced from a LiDAR ( Light Detection and Ranging ) from an ALS50 ( Airborne Laser Scanner ) sensor . The processed data has been manually edited to achieve LPI classification level 3 whereby the ground class contains minimal non-ground points such as vegetation, water , bridges , temporary features , jetties etc . Purpose: To provide fit-for-purpose elevation data for use in applications related to coastal vulnerability assessment, natural resource management ( especially water and forests) , transportation and urban planning . Additional lineage information: This data has an accuracy of 0.3m ( 95 CI ) vertical and 0.8m ( 95 CI ) horizontal with a minimum point density of one laser pulse per square metre . For more information on the datas accuracy, refer to the lineage provided in the data history .

  • North Adelaide Lidar

  • The Macquarie Barwon LiDAR survey provides elevation and photographic data over approximately 17,326 km² along the Macquarie and Barwon Rivers, north-west of Dubbo NSW. The LiDAR was captured between November 2013 and May 2014, at a nominal density of two outgoing laser pulses per square metre. Photography was captured simultaneously and provided as an ortho-rectified mosaic with a resolution of 20cm. The LiDAR was delivered in a full waveform format that retains a higher level of precision and significantly more above ground information than traditional LiDAR. A set of seamless products, including hydro-flattened bare earth terrain surfaces (DEMs), were produced to the ICSM specification. Other derived surfaces include a Digital Surface Model (DSM), Canopy Height Model (CHM) and Foliage Canopy Model (FCM). The outputs of the project are compliant with National ICSM LiDAR Product Specifications and the NEDF.

  • The geology and mineral prospectivity of the southern Thomson Orogen is poorly understood because the vast majority of its extent is buried beneath younger regolith and/or sedimentary rocks. To address this issue a collaborative program to drill 16 stratigraphic boreholes was proposed to collect samples of the basement geology that can be comprehensively analysed to improve the understanding of the geological evolution of this region. To reduce the uncertainty associated with intersecting the target stratigraphy at each of the borehole sites, estimates of the cover thickness were obtained by applying the geophysical techniques of refraction seismic, audio-magnetotellurics (AMT) and targeted magnetic inversion modelling (TMIM) prior to drilling. Refraction seismic was acquired at all 16 proposed borehole sites using a system with 48 single-component geophones and a propelled weight drop primary-wave source. At 14 of the sites clear basement refractors were observed in the data. At the two other sites, Nantilla 1 and Barrygowan 1, loss of signal due to seismic attenuation at far offsets meant that a clear basement refractor was not observed. With the exception of these two sites, three distinct refractors are generally observed in the data. Those with velocities ranging from 0.4 km/s to 1.5 km/s are interpreted as regolith, those ranging from 1.8 km/s to 2.4 km/s are interpreted as Eromanga Basin sediments, and those ranging from 3.9 km/s to 5.7 km/s are interpreted as metamorphic/igneous basement. Two-dimensional velocity models of the subsurface geology were then generated using the time-term inversion method, which allowed for the thickness of each layer to be estimated. Cover thickness estimates using refraction data vary widely from site to site, with the shallowest estimate being Overshot 1 (49 m - 55 m) and the deepest Adventure Way 1 (295 m - 317 m). These variations in cover thickness estimates from site to site are indicative of basement topography variations and are not error margins. Audio-magnetotelluric data was collected at ten sites by simultaneously deploying four porous pot electrodes, to collect the two orthogonal components of telluric data (Ex and Ey), and three magnetic induction coils, to collect the three components of magnetic data (Hx, Hy and Hz). For each dataset, a one-dimensional inversion model was produced, from which resistivity contrasts were identified and used to describe electrical conductivity discontinuities in the subsurface geology. In general, the models show a near-surface conductive layer with resistivity values ≤10 Ω·m overlying layers with continuously increasing resistivities with depth (up to 102-103 Ω·m). Those layers which were >10 Ω·m were interpreted as metamorphic/igneous basement rocks and were observed to occur at depths of ~100 m to ~300 m across the survey sites, except at Overshot 1 (38 m ±10%) and Barrygowan 1 (480 m ±10%). Targeted magnetic inversion modelling (TMIM) was applied to freely available, good quality, regional airborne magnetic survey data. Depth to magnetic source estimates were generated for 53 targets, with confidence ratings, using a dipping tabular source body to model targeted magnetic anomalies in the vicinity of the borehole sites. A combined depth estimate was generated using a distance and confidence weighted average from multiple depth estimates at all but two borehole sites. Only a single depth estimate was available at Adventure Way 1 while no depth estimates were generated at Eulo 1. These combined depth estimates provide cover thickness estimates at the sites as they are likely sourced from, or near, the top of basement. Of the ten proposed borehole sites with coincident AMT and refraction seismic data, five sites have overlapping cover thickness estimates. Cover thickness estimates from the TMIM overlap both the AMT and refraction data at four sites and at two sites where only the refraction depth estimates were available. 2 Estimating Cover Thickness in the Southern Thomson Orogen The cover thickness estimates presented in this report lower the risks associated with the proposed southern Thomson Orogen stratigraphic drilling program by reducing the uncertainty in intersecting the target stratigraphy at each of the borehole sites as well as allowing for better project and program planning. Successful completion of the stratigraphic drilling program in the southern Thomson Orogen will allow for each of these geophysical methods for estimating cover thickness to be benchmarked using actual cover thicknesses measured in the boreholes.