From 1 - 10 / 211
  • Population connectivity science involves investigating how populations are related to one another through biological dispersal. Here, we review tools, techniques and analyses used by connectivity researchers, and place them in the context of how they can be used by marine managers and policy-makers to enhance their decision-making capabilities. Specific examples of developing technologies include: advances in mark and recapture techniques, underwater imaging systems, population genetic analyses, as well as four-dimensional dispersal simulations (3D space x time). These data can then be analysed using a wide array of analyses, including matrix analysis, graph theory, and various GIS-based routines. The results can be used to identify key source and sink areas, critical linkages (keystones), natural clusters and groups, levels of accuracy, precision and variability, as well as areas of asymmetric exchange. In turn, this information can be used to help identify natural management units, to target critical conservation areas, to develop efficient sampling strategies through power analysis, and to negotiate equitable allocation of resources to upstream management in cases where downstream benefits are significant. Through a better understanding of how connectivity science can assist decision-making, we hope to encourage increased uptake of these kinds of information into institutional planning processes.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to p-rock (probability of rock) grids produced from the angular response curves from the multibeam backscatter data. The extraction of angular response curves from the raw Simrad multibeam data was achieved using the multibeam backscatter CMST-GA MB Process v10.10.17.0 toolbox software co-developed by the Centre for Marine Science and Technology (CMST) at Curtin University of Technology and Geoscience Australia (described in Gavrilov et al., 2005a, 2005b; Parnum, 2007). A number of corrections were introduced to the data and the angular response curves were produced as the average response curve within the adopted sliding windows in which port and starboard swath were processed separately as part of the process of the removal of the backscatter angular dependence. Angular backscatter response curves were compared to the reference response of rock/hard bottom (inferred grabs and cores) using the Kolmogorov-Smirnov goodness of fit to estimate the probability (p-value) of rock (p-rock). Finally, the IDW interpolation technique was used to produce a continuous layer of the p-value of hard bottom for each study area.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to the shipboard multibeam backscatter grids produced for the twelve survey areas (Areas A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1b and M1; 455 km2).

  • The datasets measure the K490 parameter (Downwelling diffuse attenuation coefficient at 490 nm, a turbidity parameter) of Australian oceans. They are derived products from MODIS (aqua) images using NASA's SeaDAS image processing software. The extent of the datasets covers the entire Australian EEZ and surrounding waters (including the southern ocean). The spatial resolution of the datasets is 0.01 dd. The datasets contain 36 monthly k490 layers between 2009 and 2011. The unit of the datasets is 1/m.

  • The extent to which low-frequency sound from marine seismic surveys impacts marine fauna is a subject of growing concern. The predominant frequency range of seismic airgun emissions is within the hearing range of cetaceans, reptiles, and fishes, and it can also elicit a neurological response in some invertebrates. Offshore seismic surveys have long been considered to be disruptive to fisheries, but comparatively few studies target commercially important species in realistic exposure scenarios. One of the main challenges in underwater sound impact studies is the meaningful translation of laboratory results to the field. Underwater sound properties are affected by the sound source, as well as characteristics of the water column, substrate, and biological communities. The experimental set-up is also critical in determining accurate response measurements, and design features of holding tanks can lead to misinterpretation of results, particularly related to behaviour. It may be tempting to simplify laboratory results to show effect or no effect, where results should instead be interpreted in the context of realistic exposure scenarios and field conditions. This project was developed in response to concerns raised by the fishing industry during stakeholder consultation in the lead up to a proposed seismic survey in the Gippsland Basin (Victoria, Australia), in addition to a broader need to acquire baseline data that may be used to quantify potential impacts of seismic operations on marine organisms. The project involves seven experimental components conducted before, during and after the seismic survey in both control and experimental areas of the Gippsland Basin: 1) Theoretical noise modelling, 2) Field-based noise monitoring and modelling, 3) Image acquisition by Autonomous Underwater Vehicle (AUV), 4) Bivalve sampling by dredging, 5) Fish movement analysis by tagging, 6) Catch rate analysis, and 7) Environmental modelling during the 2010 mortality event. In this presentation, we describe these components and critically review our current understanding of low-frequency sound impact on marine fish and invertebrates.

  • The local Moran I grid calculates local autocorrelation of the bathymetry grid. It indicates local heterogeneity. The large and positive values represent positive autocorrelation or clumped pattern; the large negative values represent negative autocorrelation or checkerboard pattern; the values close to zero represent random local pattern. The grid was created from the bathymetry grid of Darwin Harbour. Please see the metadata of the bathymetry grid for details (GeoCat no: 74915).

  • Seafloor bathymetric data and its derivatives fulfil a range of applications that are relevant to supporting the management of marine ecosystems and can provide a potentially powerful physical surrogate for benthic biodiversity. Similarly, morphological and seafloor terrain variables such as slope, curvature and rugosity derived from bathymetry data through GIS analysis not only describe seabed morphology but can also act as proxies for oceanographic processes The distributions of benthic marine fauna and flora most commonly respond to local changes in the topography of the seafloor. When seafloor topography is coupled with biological surveys it can help managers understand which environments contribute most to the growth, reproduction and survival of marine species. These models of habitat suitability provide natural resource managers with a tool with which to visualise the potential habitats of particular species. The accuracy of the habitat suitability models however, is critically reliant on the accuracy of underlying bathymetric data. The uncertainty in the bathymetric data is often ignored and often there is little recognition that the input bathymetric data and the derived spatial data products of the bathymetric data are merely modelled representations of one reality. These models can contain significant levels of uncertainty that are dependent upon the original depth measurements. This research paper explores a method to represent the uncertainty in bathymetric data. We discover that multibeam bathymetry data uncertainties are stochastic at individual soundings but exhibit a distinct spatial distribution with increasing magnitude from nadir to outer beams. We find that the restricted spatial randomness method is able to realistically simulate both the stochastic and spatial characteristics of the data uncertainty. This research concludes that the Monte Carlo method is appropriate for the uncertainty analysis of GIS operations and although the multibeam bathymetry data have notable overall uncertainty level, its impact on subsequent derivative analysis is likely to be minor in this dataset at the 2 m scale. Monitoring and change detection of the seafloor requires detailed baseline data with uncertainty estimates to ensure that features that display change are reliably detected. The accuracy of marine habitat maps and their associated levels of uncertainty are extremely hard to convey visually or to quantify with existing methodologies. The new techniques developed in this research integrate existing statistical techniques in a novel way to improve insights into classification and related uncertainty for seabed habitat maps which will progress and improve resource management for regional and national ocean policy.

  • The Leeuwin Current has significant ecological impact on the coastal and marine ecosystem of south-western Australia. This study investigated the spatial and temporal dynamics of the Leeuwin Current using monthly MODIS SST dataset between July 2002 and December 2012. Topographic Position Index layers were derived from the SST data for the mapping of the spatial structure of the Leeuwin Current. The semi-automatic classification process involves segmentation, 'seeds' growing and manual editing. The mapping results enabled us to quantitatively examine the current's spatial and temporal dynamics in structure, strength, cross-shelf movement and chlorophyll a characteristic. It was found that the Leeuwin Current exhibits complex spatial structure, with a number of meanders, offshoots and eddies developed from the current core along its flowing path. The Leeuwin Current has a clear seasonal cycle. During austral winter, the current locates closer to the coast (near shelf break), becomes stronger in strength and has higher chlorophyll a concentrations. While, during austral summer, the current moves offshore, reduces its strength and chlorophyll a concentrations. The Leeuwin Current also has notable inter-annual variation due to ENSO events. In El Niño years the current is likely to reduce strength, move further inshore and increase its chlorophyll a concentrations. The opposite occurs during the La Niña years. In addition, this study also demonstrated that the Leeuwin Current has a significantly positive influence over the regional nutrient characteristics during the winter and autumn seasons.

  • The Timor Sea and its tropical marine environment support significant and growing economic activity including oil and gas exploration. To reduce uncertainty in decision making regarding the sustainable use and ongoing protection of these marine resources, environmental managers and resource users require sound scientific information on the composition and stability of seabed environments and their biological assemblages. Surveys SOL4934 and SOL5117 to the eastern Joseph Bonaparte Gulf were undertaken in August and September 2009 and July and August 2010 respectively, in collaboration with the Australian Institute of Marine Science, with research collaborations from the RAN Australian Hydrographic Office, the Geological Survey of Canada and the Museum and Art Gallery of the Northern Territory. The purpose of these surveys were to develop biophysical maps, and deliver data and information products pertaining to complex seabed environment of the Van Diemen Rise and identify potential geohazards and unique, sensitive environments that relate to offshore infrastructure. This dataset comprises four P pools in the upper 2 cm of the fine fraction (<63 um) of seabed sediments:adsorbed/oxide-associated-P; authigenic-P; detrital-P and organic-P. Some relevant publications are listed below: 1. Heap, A.D., Przeslawski, R., Radke, L., Trafford, J., Battershill, C. and Shipboard Party. 2010. Seabed environments of the eastern Joseph Bonaparte Gulf, Northern Australia: SOL4934 Post Survey Report. Geoscience Australia Record 2010/09, pp.81. 2. Anderson, T.J., Nichol, S., Radke, L., Heap, A.D., Battershill, C., Hughes, M., Siwabessy, P.J., Barrie, V., Alvarez de Glasby, B., Tran, M., Daniell, J. & Shipboard Party, 2011b. Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia: GA0325/Sol5117 - Post-Survey Report. Geoscience Australia, Record 2011/08, 58pp. 3. Radke, L.C., Li, J., Douglas, G., Przeslawski, R., Nichol, S, Siwabessy, J., Huang, Z., Trafford, J., Watson, T. and Whiteway, T. Characterising sediments of a tropical sediment-starved continental shelf using cluster analysis of physical and geochemical variables. Environmental Chemistry, in press

  • Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir). This dataset comprises total chlorin concentrations and chlorin indices from the upper 2cm of seabed sediments.