From 1 - 10 / 80
  • The Bushfire Attack Level Toolbox provides access to ArcGIS geoprocessing scripts that calculate the Bushfire Attack Level (BAL) as per Method 1 in AS-3959 (2009). BAL is a measure of the severity of a building's potential exposure to ember attack, radiant heat and direct flame contact in the event of a bushfire. It serves as a basis for establishing the requirements for construction to improve protection of building elements from attack by bushfire. The BAL Maps and Exposure report provide maps of three communities in Western Australia, with indicative BAL levels, and the aggregate inventory of assets and population exposed to the different levels of BAL.

  • Tropical cyclone scenario prepared for Tonga National Emergency Management Office (NEMO) as part of the PacSAFE Project (2016-2018)

  • Tropical cyclones are the most common disaster in the Pacific, and among the most destructive. In December 2012, Cyclone Evan caused over US$200 million damage in Samoa, nearly 30 percent of Samoan GDP. Niue suffered losses of US$85 million following Cyclone Heta in 2004-over five times its GDP. As recently as January 2014, Cyclone Ian caused significant damage throughout Tonga, resulting in the first payout of the Pacific Catastrophe Risk Insurance Pilot system operated by the World Bank (2014). According to the Intergovernmental Panel on Climate Change (IPCC), intense tropical cyclone activity in the Pacific basin will likely increase in the future (IPCC 2013). But such general statements about global tropical cyclone activity provide little guidance on how impacts may change locally or even regionally, and thus do little to help communities and nations prepare appropriate adaptation measures. This study assesses climate change in terms of impact on the human population and its assets, expressed in terms of financial loss. An impact focus is relevant to adaptation because changes in hazard do not necessarily result in a proportional change in impact. This is because impacts are driven by exposure and vulnerability as well as by hazard. For example, a small shift in hazard in a densely populated area may have more significant consequences than a bigger change in an unpopulated area. Analogously, a dense population that has a low vulnerability to a particular hazard might not need to adapt significantly to a change in hazard. Even in regions with high tropical cyclone risk and correspondingly stringent building codes, such as the state of Florida, a modest 1 percent increase in wind speeds can result in a 5 percent to 10 percent increase in loss to residential property. Quantifying the change impact thus supports evidence-based decision making on adaptation to future climate risk.

  • The Atmospheric Tomography software is a command line tool written in python to estimate the emission rate of a point source from concentration data. It implements an extension of the Bayesian inversion method. Bhatia, S., Feitz, A. and Francis, A. (2017) Atmospheric Tomography, GitHub repository, https://github.com/GeoscienceAustralia/atmospheric_tomography_laser

  • Two shallow sub-surface CO2 controlled release experiments were conducted at the Ginninderra test site during 2012. The theme of the first experiment was CO2 detection in the soil and surface emissions quantification. The theme for the second experiment was investigating sub-surface migration and broad scale detection technologies. Our objective overall is to design cheaper monitoring technologies to evaluate leakage and environmental impact in the shallow sub-surface. Over 10 different monitoring techniques were evaluated at the site against a known CO2 release. These included soil gas, soil CO2 flux, soil analysis, eddy covariance, atmospheric tomography, noble gas tracers, ground penetrating radar, electromagnetic surveys, airborne hyperspectral, in-field phenotyping (thermal, hyperspectral and 3D imaging), and microbial soil genomics. Technique highlights and an assessment of the implications for large scale storage are presented in the following corresponding talks.

  • The Bushfire Attack Level Toolbox provides access to ArcGIS geoprocessing scripts that calculate the Bushfire Attack Level (BAL) as per Method 1 in AS3959-2009. BAL is a measure of the severity of a building's potential exposure to ember attack, radiant head and direct flame contact. It is defined in AS3959-2009 to serve as a basis for establishing the requirements for construction to improve protection of building elements from attack by bushfire. In the BAL Toolbox, the calculation method (as defined in AS3959-2009) is adapted to be applied spatially. Input information required are a digital elevation model and classified vegetation data. The BAL Toolbox allows users to calculate BAL for small regions, without the need for large computational resources or for executing code in command-line environments. This will provide stakeholders with the ability to efficiently generate rigorous and robust maps of Bushfire Attack Level that adhere to the national standard, compared to products generated by manual techniques. The BAL Toolbox code is written in Python, utilising the ArcGIS "arcpy" module to enable easy reading/writing of raster data and to provide methods for a graphical user interface in the standard ArcGIS tool style. The BAL Toolbox User Guide provides users an overview of the Toolbox, instructions on installation, any customisations execution and evaluation of results.

  • 40 years atmospheric reanalysis for Australia region. http://www.ecmwf.int/products/data/archive/descriptions/e4/index.html

  • A metadata report for the atmospheric monitoring station installed in Arcturus, south of Emerald in central Queensland. The station was installed for baseline atmospheric monitoring to contribute to emission modelling spanning 2010-2014. The station included compositional gas analysers, supporting meteorological sensors and an eddy covariance flux tower. The metadata covered in the report include: the major variables measured by each instrument, the data duration and frequency, data accuracy, calibration and corrections, the location the data is stored, and the primary contact for the data.

  • Wind speed Coefficients: 1) Fixed 2) Linear 3) Capped

  • Eddy Covariance (EC) is considered a key atmospheric technique for quantifying CO2 leakage. However the complex and localised heterogeneity of a CO2 leak above the background environmental signal violates several of the critical assumptions made when implementing the EC technique, including: - That horizontal gradients in CO2 concentration are zero. - That horizontal and vertical gradients in the covariance of CO2 and orthogonal wind directions are zero. The ability of EC measurements of CO2 flux at the surface to provide information on the location and strength of CO2 leakage from below ground stores was tested during a 144 kg/day release event (27 March - 13 June 2012) at the Ginninderra controlled release facility. We show that the direction of the leak can be ascertained with some confidence although this depends on leak strength and distance from leak. Elevated CO2 levels are seen in the direction of the leakage area, however quantifying the emissions is confounded by the potential bias within each measurement through breaching of the assumptions underpinning the EC technique. The CO2 flux due to advection of the horizontal CO2 concentration gradients, thought to be the largest component of the error with the violation of the EC technique's assumptions, has been estimated using the modelling software Windtrax. The magnitude of the CO2 flux due to advection is then compared with the measured CO2 flux measured using the EC technique, to provide an initial assessment of the suitability of the EC technique to quantifying leakage source rates.