From 1 - 10 / 80
  • Eddy Covariance (EC) is considered a key atmospheric technique for quantifying CO2 leakage. However the complex and localised heterogeneity of a CO2 leak above the background environmental signal violates several of the critical assumptions made when implementing the EC technique, including: - That horizontal gradients in CO2 concentration are zero. - That horizontal and vertical gradients in the covariance of CO2 and orthogonal wind directions are zero. The ability of EC measurements of CO2 flux at the surface to provide information on the location and strength of CO2 leakage from below ground stores was tested during a 144 kg/day release event (27 March - 13 June 2012) at the Ginninderra controlled release facility. We show that the direction of the leak can be ascertained with some confidence although this depends on leak strength and distance from leak. Elevated CO2 levels are seen in the direction of the leakage area, however quantifying the emissions is confounded by the potential bias within each measurement through breaching of the assumptions underpinning the EC technique. The CO2 flux due to advection of the horizontal CO2 concentration gradients, thought to be the largest component of the error with the violation of the EC technique's assumptions, has been estimated using the modelling software Windtrax. The magnitude of the CO2 flux due to advection is then compared with the measured CO2 flux measured using the EC technique, to provide an initial assessment of the suitability of the EC technique to quantifying leakage source rates.

  • Two shallow sub-surface CO2 controlled release experiments were conducted at the Ginninderra test site during 2012. The theme of the first experiment was CO2 detection in the soil and surface emissions quantification. The theme for the second experiment was investigating sub-surface migration and broad scale detection technologies. Our objective overall is to design cheaper monitoring technologies to evaluate leakage and environmental impact in the shallow sub-surface. Over 10 different monitoring techniques were evaluated at the site against a known CO2 release. These included soil gas, soil CO2 flux, soil analysis, eddy covariance, atmospheric tomography, noble gas tracers, ground penetrating radar, electromagnetic surveys, airborne hyperspectral, in-field phenotyping (thermal, hyperspectral and 3D imaging), and microbial soil genomics. Technique highlights and an assessment of the implications for large scale storage are presented in the following corresponding talks.

  • A metadata report for the atmospheric monitoring station installed in Arcturus, south of Emerald in central Queensland. The station was installed for baseline atmospheric monitoring to contribute to emission modelling spanning 2010-2014. The station included compositional gas analysers, supporting meteorological sensors and an eddy covariance flux tower. The metadata covered in the report include: the major variables measured by each instrument, the data duration and frequency, data accuracy, calibration and corrections, the location the data is stored, and the primary contact for the data.

  • To provide the solar power industry with a data resource to allow them to assess the economic potential of a site for a solar power plant. Specifically under the Solar Flagship program.

  • The Australian Solar Energy Information System V2.0 has been developed as a collaborative project between Geoscience Australia and the Bureau of Meteorology. The product provides pre-competitive spatial information for investigations into suitable locations for solar energy infrastructure. The outcome of this project will be the production of new and improved solar resource data, to be used by solar researchers and the Australian solar power industry. it is aimed to facilitate broad analysis of both physical and socio-economic data parameters which will assist the solar industry to identify regions best suited for development of solar energy generation. It also has increased the quality and availability of national coverage solar exposure data, through the improved calibration and validation of satellite based solar exposure gridded data. The project is funded by the Australian Renewable Energy Agency. The ASEIS V2.0 has a solar database of resource mapping data which records and/or map the following Solar Exposure over a large temporal range, energy networks, infrastructure, water sources and other relevant data. ASEIS V2.0 has additional solar exposure data provided by the Bureau of Meteorology. - Australian Daily Gridded Solar Exposure Data now ranges from 1990 to 2012 - Australian Monthly Solar Exposure Gridded Data now ranges from 1990 to 2011 ASEIS V2.0 also has a new electricity transmission reference dataset which allows for information to be assessed on any chosen region the distance and bearing angle to the closest transmission powerline.

  • Results from the first pass application of the tomography technique using low accuracy sensors is presented and limitations of the sensors and technique discussed. BUll. Seismol. Soc. AM.

  • To determine the magnitude of severe wind gust hazard due to thunderstorm downbursts using regional climate model output and analysis of observed data (including radar reflectivity and proximity soundings).

  • The ultimate purpose of carbon capture and storage is to keep CO2 out of the atmosphere. However there are some scenarios in which leakage to atmosphere may occur. Because of the large and variable level of naturallyoccurring CO2 , and rapid dispersion in the atmosphere, leakage to atmosphere can be difficult to detect from concentration measurements. By using prior information from risk assessments about plausible location of leaks, it is possible to design simple yet effective systems for identifying the location of a leak within a pre-defined area of surveillance. We have designed an inexpensive system of autonomous sensors that can locate leaks of CO2 , and have tested it during a controlled release at the CO2CRC Otway site. The system proved effective and it, and its associated workflow, could be adapted and implemented in a variety of storage settings.

  • Geoscience Australia and the CO2CRC have constructed a greenhouse gas controlled release facility at an experimental agricultural station maintained by CSIRO Plant Industry at Ginninderra, Canberra. The facility is designed to simulate surface emissions of CO2 from the soil into the atmosphere and is modelled on the ZERT controlled release facility in Montana. Injection of CO2 into the soil is via a 120 m long slotted HDPE pipe installed horizontally 2 m underground. An eddy covariance (EC) system was installed at Ginninderra during the first sub-surface release (March - June 2012). The EC system, which generated 15 minute averages using a 10 Hz sampling frequency, measured net radiation (as a function of upwelling and downwelling, solar and longwave radiation); wind speed and direction in 3 dimensions; CO2 and H2O concentration; and temperature and pressure. The EC system was installed to provide baseline atmospheric measurements and assess methods for quantifying CO2 leakages. The daily CO2 release rate was 100 kg/d. Here we report on the application of the CO2 emissions quantification method developed by Pan et al. (2010) for detecting and quantifying CO2 leakages using EC techniques. The approach seeks to isolate the CO2 leakage signal from the natural variation inherent in flux data, using a time-window splitting scheme, median filtering and scaling techniques. Results from application of the EC method at the Ginninderra site will be presented and modifications to the method and its limitations discussed. Pan, L.; Lewicki, J.L.; Oldenburg C.M.; and Fischer M.L., (2010). Time-window based filtering method for near-surface detection of leakage from geological carbon sequestration sites, Environmental Earth Sciences, 60, pp 359-369. Proceedings of the 2013 International Carbon Dioxide Conference - Beijing China

  • The Australian Solar Energy Information System V3.0 has been developed as a collaborative project between Geoscience Australia and the Bureau of Meteorology. The product provides pre-competitive spatial information for investigations into suitable locations for solar energy infrastructure. The outcome of this project will be the production of new and improved solar resource data, to be used by solar researchers and the Australian solar power industry. it is aimed to facilitate broad analysis of both physical and socio-economic data parameters which will assist the solar industry to identify regions best suited for development of solar energy generation. It also has increased the quality and availability of national coverage solar exposure data, through the improved calibration and validation of satellite based solar exposure gridded data. The project is funded by the Australian Renewable Energy Agency. The ASEIS V3.0 has a solar database of resource mapping data which records and/or map the following Solar Exposure over a large temporal range, energy networks, infrastructure, water sources and other relevant data. ASEIS V3.0 has additional solar exposure data provided by the Bureau of Meteorology. - Australian Daily Gridded Solar Exposure Data now ranges from 1990 to 2013 - Australian Monthly Solar Exposure Gridded Data now ranges from 1990 to 2013 - Australian Hourly Solar Exposure Gridded Data now ranges from 1990 to 2012 ASEIS V3.0 also has a new electricity transmission reference dataset which allows for information to be assessed on any chosen region against the distance to the closest transmission powerline.