From 1 - 10 / 273
  • This web service displays the results of a marine survey conducted by Geoscience Australia in Commonwealth waters of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014. The additional codes GA-0345 and GA-0346 refer to Geoscience Australia (GA) internal codes and TAN1411 is the vessel survey number given by the RV Tangaroa for 2014.

  • This web service provides access to the National Aviation Facilities Datasets, representing the spatial locations of air traffic services centres, along with all known aviation control towers, major hangars, major fuel depots, major terminals and fire fighting and rescue facilities located within Australia, all complimented with feature attribution.

  • Total magnetic intensity data measures variations in the intensity of the Earths magnetic field caused by the contrasting content of rock-forming minerals in the Earths crust. The data are collected on airborne geophysical surveys conducted by Commonwealth, State & NT Governments and the private sector.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The 2015 Total magnetic Intensity (TMI) grid of Australia has a grid cell size of ~3 seconds of arc (approximately 80 m). This grid only includes airborne-derived TMI data for onshore and near-offshore continental areas. Since the fifth edition was released in 2010 data from 41 new surveys have been added to the database, acquired mainly by the State and Territory Geological Surveys. It is estimated that 31 500 000 line-kilometres of survey data were acquired to produce the 2015 grid data, 4 500 000 line-kilometres more than for the previous edition.

  • Coastal communities in Australia are particularly exposed to coincident natural hazards, whereby tropical cyclones and extra-tropical storms cause damage to infrastructure and shorelines from severe wind, flood and storm surge. Because the climatic drivers of severe storms are stronger under certain conditions (e.g. during La Ni±a periods for tropical cyclones), these events can repeatedly impact the coast over periods of weeks to months. Historically, major episodes of beach erosion along southeast Australia have occurred during every decade over the last century, with the most severe in 1974 resulting from two extra-tropical storms in two months. <p>While the process of beach erosion is well understood in general terms, the response of a specific sector of coast to clustered storms may not be. For effective coastal management, this site specific knowledge becomes essential. Here we present a framework for integrating coastal geomorphology and coastal engineering approaches to model shoreline response to clustered storms at a spatial scale that can directly inform management agencies. We focus on two case study areas in southeast Australia, the beaches of the Adelaide metropolitan coast (South Australia) and Old Bar beach (central New South Wales) where erosion is a management priority. <p>For each site we adopt the coastal sediment compartment as the functional management unit, mapped for the Australian continent at multiple spatial scales, and use sub-surface information (boreholes, ground penetrating radar profiles) to estimate sediment volumes in the upper beach to foredune. These data are then used to inform shoreline response modelling linked to an event time series (observed and hind cast) as a separate project component. Future work includes assessment of `at-risk infrastructure at each site. This paper is a contribution to the Bushfire and Natural Hazard Cooperative Research Centre project Storm surge: Resilience to clustered disaster events on the coast.

  • Web Map Service of Geoscience Australia's national geophysical grids for magnetics, gravity and radiometrics. The service also contains outlines and descriptions of the airborne geophysical surveys used to compile the magnetic and radiometric grids.

  • Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This NTGS_Victoria_Basin_Gravity_P201582_CSCBA267GUVD.nc grid is a first vertical derivative of the Bouguer anomaly grid for the Victoria Basin Gravity survey. This gravity survey was acquired under the project No. 201582 for the geological survey of NT. The grid has a cell size of 0.00734872 degrees (approximately 800m). A total of 6173 gravity stations were acquired to produce the original grid. A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.

  • Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Ngururrpa_Gravity_Survey_P201590_CSCBA267GUVD.nc grid is a first vertical derivative of the Bouguer anomaly grid for the Australia Wide AFGN Absolute 2015 survey. This gravity survey was acquired under the project No. 201590 for the geological survey of All States. The grid has a cell size of 0.00465964 degrees (approximately 500m). A total of 35 gravity stations were acquired to produce the original grid. A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.

  • The thorium over potassium grid is a derivative of the 2015 radiometric or gamma-ray grid of Australia. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data are collected on airborne geophysical surveys conducted by Commonwealth, State and Northern Territory Governments and the private sector. The 2015 thorium over potassium grid has a cell size of about 100m (0.001 degrees) and is derived from the filtered thorium and potassium grids.

  • The filtered potassium grid is a derivative of the 2015 radiometric or gamma-ray grid of Australia. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium, uranium and thorium. The data are collected on airborne geophysical surveys conducted by Commonwealth, State and Northern Territory Governments and the private sector. The 2015 filtered potassium grid has a cell size of about 100m (0.001 degrees) and shows potassium element concentrations of the Australia region. It was obtained by applying a low-pass filter to the original potassium grid. Potassium is the seventh most abundant element in the Earth's crust. This potassium concentration grid can be used to locate minerals and compounds containing potassium. The original grid was converted from ERMapper (.ers) format to netCDF4_classic format using GDAL1.11.1. The main purpose of this conversion is to enable access to the data by relevant open source tools and software. The netCDF grid was created on 2016-03-29.