30233 record(s)
Type of resources
Publication year
Distribution Formats
Service types
From 1 - 10 / 30233
  • The Proterozoic Warramunga Group, as previously mapped around Tennant Creek, is shown to consist of two sequences separated by a major angular unconformity. The older sequence, which is tightly folded and cleaved, hosts the gold-copper-ironstone lodes near Tennant Creek. The younger sequence, exposed north of Tennant Creek, is correlated with the lower Hatches Creek Group south of Tennant Creek. It is overlain conformably by the Tomkinson Creek beds, which are correlated with the middle and upper Hatches Creek Group. The Rising Sun Conglomerate, southeast of Tennant Creek, is a composite unit, consisting of Hatches Creek Group equivalents and unconformably overlying Cambrian rocks.

  • Conodont Biostratigraphy of the upper Devonian reef complexes of the Canning Basin, Western Australia

  • The Historical Bushfire Boundaries service represents the aggregation of jurisdictional supplied burnt areas polygons stemming from the early 1900's through to 2022 (excluding the Northern Territory). The burnt area data represents curated jurisdictional owned polygons of both bushfires and prescribed (planned) burns. To ensure the dataset adhered to the nationally approved and agreed data dictionary for fire history Geoscience Australia had to modify some of the attributes presented. The information provided within this service is reflective only of data supplied by participating authoritative agencies and may or may not represent all fire history within a state.

  • The coverage of this dataset is over the Taree region . The C3 LAS data set contains point data in LAS 1.2 format sourced from a LiDAR ( Light Detection and Ranging ) from an ALS50 ( Airborne Laser Scanner ) sensor . The processed data has been manually edited to achieve LPI classification level 3 whereby the ground class contains minimal non-ground points such as vegetation , water , bridges , temporary features , jetties etc . Purpose: To provide fit-for-purpose elevation data for use in applications related to coastal vulnerability assessment, natural resource management ( especially water and forests) , transportation and urban planning . Additional lineage information: This data has an accuracy of 0.3m ( 95 confidence ) horizontal with a minimum point density of one laser pulse per square metre. For more information on the data's accuracy, refer to the lineage provided in the data history .

  • We collected 38 groundwater and two surface water samples in the semi-arid Lake Woods region of the Northern Territory to better understand the hydrogeochemistry of this system, which straddles the Wiso, Tennant Creek and Georgina geological regions. Lake Woods is presently a losing waterbody feeding the underlying groundwater system. The main aquifers comprise mainly carbonate (limestone and dolostone), siliciclastic (sandstone and siltstone) and evaporitic units. The water composition was determined in terms of bulk properties (pH, electrical conductivity, temperature, dissolved oxygen, redox potential), 40 major, minor and trace elements as well as six isotopes (δ18Owater, δ2Hwater, δ13CDIC, δ34SSO4=, δ18OSO4=, 87Sr/86Sr). The groundwater is recharged through infiltration in the catchment from monsoonal rainfall (annual average rainfall ~600 mm) and runoff. It evolves geochemically mainly through evapotranspiration and water–mineral interaction (dissolution of carbonates, silicates, and to a lesser extent sulfates). The two surface waters (one from the main creek feeding the lake, the other from the lake itself) are extraordinarily enriched in 18O and 2H isotopes (δ18O of +10.9 and +16.4 ‰ VSMOW, and δ2H of +41 and +93 ‰ VSMOW, respectively), which is interpreted to reflect evaporation during the dry season (annual average evaporation ~3000 mm) under low humidity conditions (annual average relative humidity ~40 %). This interpretation is supported by modelling results. The potassium (K) relative enrichment (K/Cl mass ratio over 50 times that of sea water) is similar to that observed in salt-lake systems worldwide that are prospective for potash resources. Potassium enrichment is believed to derive partly from dust during atmospheric transport/deposition, but mostly from weathering of K-silicates in the aquifer materials (and possibly underlying formations). Further studies of Australian salt-lake systems are required to reach evidence-based conclusions on their mineral potential for potash, lithium, boron and other low-temperature mineral system commodities such as uranium. <b>Citation:</b> P. de Caritat, E. N. Bastrakov, S. Jaireth, P. M. English, J. D. A. Clarke, T. P. Mernagh, A. S. Wygralak, H. E. Dulfer & J. Trafford (2019) Groundwater geochemistry, hydrogeology and potash mineral potential of the Lake Woods region, Northern Territory, Australia, <i>Australian Journal of Earth Sciences</i>, 66:3, 411-430, DOI: 10.1080/08120099.2018.1543208

  • Geochemical surveys deliver fundamental data, information and knowledge about the concentration and spatial distribution of chemical elements, isotopes and compounds in the natural environment. Typically near-surface sampling media, such as soil, sediment, outcropping rocks and stream or groundwater, are used. The application of such datasets to fields such as mineral exploration, environmental management, and geomedicine has been widely documented. In this presentation I reflect on a sabbatical experience with the Australian Federal Police (AFP) in 2017-2018 that allowed me to extend the interpretation of geochemical survey data beyond these established applications. In particular, with my collaborators we explore ways in which geochemical survey data and maps can be used to indicate the provenance of an evidentiary sample collected at a crime scene or obtained for instance from items belonging to a suspect intercepted at border entry. Because soils are extremely diverse mineralogically, geochemically and biologically, it should theoretically be possible to exclude very large swathes of territory (>90%) from further provenancing investigation using soil data. In a collaboration between Geoscience Australia (GA), the AFP and the University of Canberra (UC), a recent geochemical survey of the urban/suburban Canberra region in southeastern Australia is being used as a testbed for developing different approaches to forensic applications of geochemical surveys. A predictive soil provenancing method at the national scale was also developed and tested for application where no actual detailed, fit-for-purpose geochemical survey data exist. Over the next few years, GA, AFP and UC are collaborating with Flinders University to add biome data from soil and soil-derived dust to further improve the provenancing technique. This Abstract was presented at the 2021 Goldschmidt Conference (

  • This service has been created specifically for display in the National Map and the chosen symbology may not suit other mapping applications. The Australian Topographic web map service is seamless national dataset coverage for the whole of Australia. These data are best suited to graphical applications. These data may vary greatly in quality depending on the method of capture and digitising specifications in place at the time of capture. The web map service portrays detailed graphic representation of features that appear on the Earth's surface. These features include the administration boundaries from the Geoscience Australia 250K Topographic Data, including state forest and reserves.

  • This service provides Australian surface hydrology, including natural and man-made features such as water courses (including directional flow paths), lakes, dams and other water bodies. The information was derived from the Surface Hydrology database, with a nominal scale of 1:250,000. The National Basins and Catchments are a national topographic representation of drainage areas across the landscape. Each basin is made up of a number of catchments depending on the features of the landscape. This service shows the relationship between catchments and basins. The service contains layer scale dependencies.

  • A second colour poster comparing the concepts in the computer game Minecraft with particular minerals and rocks. Aimed at school children, for display in classrooms. Designed to be printed at A2, but can also be printed smaller.