2020
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Scale
Topics
-
Magnetic Anomaly Map of Australia, Seventh Edition, 2020 - Enhanced Products Package - TMI RTP image
Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The 2019 Total magnetic Intensity (TMI) grid of Australia has a grid cell size of ~3 seconds of arc (approximately 80 m). This grid only includes airborne-derived TMI data for onshore and near-offshore continental areas. Since the sixth edition was released in 2015, data from 234 new surveys have been added to the database, acquired mainly by the State and Territory Geological Surveys. The new grid was derived from a re-levelling of the national magnetic grid database. The survey grids were levelled to each other, and to the Australia Wide Airborne Geophysical Survey (AWAGS), which serves as a baseline to constrain long wavelengths in the final grid. It is estimated that 33 500 000 line-kilometres of survey data were acquired to produce the 2019 grid data, about 2 000 000 line-kilometres more than for the previous edition. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Magnetic Anomaly Map of Australia, Seventh Edition, 2020 - Enhanced Products Package - TMI RTP image is a pseudocolour image of the TMI grid of the Magnetic Anomaly Map of Australia, Seventh Edition, 2019. This grid has a cell size of 0.00083 degrees (approximately 88m). This pseudocolour image shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The image can also be used to locate structural features such as dykes.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSWA Naretha Eucla Basin 3 Doserate Grid Geodetic has a cell size of 0.00042 degrees (approximately 43m) and shows the terrestrial dose rate of the Naretha, WA, 2009 (Eucla Basin 3). The data used to produce this grid was acquired in 2009 by the WA Government, and consisted of 124870 line-kilometres of data at 200m line spacing and 50m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.00042 degrees (approximately 43m) and shows potassium element concentration of the Naretha, WA, 2009 (Eucla Basin 3) in units of percent (or %). The data used to produce this grid was acquired in 2009 by the WA Government, and consisted of 124870 line-kilometres of data at 200m line spacing and 50m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00042 degrees (approximately 43m) and shows uranium element concentration of the Naretha, WA, 2009 (Eucla Basin 3) in units of parts per million (or ppm). The data used to produce this grid was acquired in 2009 by the WA Government, and consisted of 124870 line-kilometres of data at 200m line spacing and 50m terrain clearance.
-
Gravity data measure small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This National Gravity Compilation 2019 includes airborne tilt grid is derived from the 2019 Australian National Gravity Grids B series. These gravity data were acquired under the project No. 202008. The grid has a cell size of 0.00417 degrees (approximately 435m). This gravity anomaly grid is derived from ground observations stored in the Australian National Gravity Database (ANGD) as at September 2019, supplemented with offshore data sourced from v28.1 of the Global Gravity grid developed using data from the Scripps Institution of Oceanography, the National Oceanic and Atmospheric Administration (NOAA), and National Geospatial-Intelligence Agency (NGA) at Scripps Institution of Oceanography, University of California San Diego. Airborne gravity and gravity gradiometry data were also included to provide better resolution to areas where ground gravity data was not of a suitable quality. Out of the approximately 1.8 million gravity observations, nearly 1.4 million gravity stations in the ANGD together with Airborne Gravity surveys totalling 345,000 line km and 106,000 line km of Airborne Gravity Gradiometry were used to generate this grid. The ground gravity data used in this grid has been acquired by the Commonwealth, State and Territory Governments, the mining and exploration industry, universities and research organisations from the 1940's to the present day. Station spacing varies from approximately 11 km down to less than 1 km, with major parts of the continent having station spacing between 2.5 and 7 km. Airborne surveys have a line spacing ranging from 0.5 km to 2.5 km. Terrain corrections to gravity were calculated using both offshore bathymetry and onshore topography data. The grid shows the tilt filter of the complete Bouguer anomalies (B series) over Australia and its continental margins.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSSA Warrina Dose Grid Geodetic has a cell size of 0.00083 degrees (approximately 87m) and shows the terrestrial dose rate of the Marree-Warrina Airborne Magnetic & Radiometric Survey, SA, 2012. The data used to produce this grid was acquired in 2012 by the SA Government, and consisted of 132484 line-kilometres of data at 400m line spacing and 80m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSSA Marree Dose Grid Geodetic has a cell size of 0.00083 degrees (approximately 87m) and shows the terrestrial dose rate of the Marree-Warrina Airborne Magnetic & Radiometric Survey, SA, 2012. The data used to produce this grid was acquired in 2012 by the SA Government, and consisted of 132484 line-kilometres of data at 400m line spacing and 80m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.00083 degrees (approximately 87m) and shows thorium element concentration of the Marree-Warrina Airborne Magnetic & Radiometric Survey, SA, 2012 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2012 by the SA Government, and consisted of 132484 line-kilometres of data at 400m line spacing and 80m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00083 degrees (approximately 87m) and shows uranium element concentration of the Marree-Warrina Airborne Magnetic & Radiometric Survey, SA, 2012 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2012 by the SA Government, and consisted of 132484 line-kilometres of data at 400m line spacing and 80m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSWA Widgiemooltha South Doserate Grid Geodetic has a cell size of 0.00021 degrees (approximately 21m) and shows the terrestrial dose rate of the Widgiemooltha South, WA, 2012. The data used to produce this grid was acquired in 2012 by the WA Government, and consisted of 131391 line-kilometres of data at 100m line spacing and 50m terrain clearance.