From 1 - 10 / 3005
  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Magnetic Anomaly Map of Australia, Seventh Edition, 2019 TMI Greyscale image is a greyscale image of the TMI grid of the Magnetic Anomaly Map of Australia, Seventh Edition, 2019. The 2019 Total magnetic Intensity (TMI) grid of Australia has a grid cell size of ~3 seconds of arc (approximately 80 m). This grid only includes airborne-derived TMI data for onshore and near-offshore continental areas. Since the sixth edition was released in 2015, data from 234 new surveys have been added to the database, acquired mainly by the State and Territory Geological Surveys. The new grid was derived from a re-levelling of the national magnetic grid database. The survey grids were levelled to each other, and to the Australia Wide Airborne Geophysical Survey (AWAGS), which serves as a baseline to constrain long wavelengths in the final grid. It is estimated that 33 500 000 line-kilometres of survey data were acquired to produce the 2019 grid data, about 2 000 000 line-kilometres more than for the previous edition. The grid used to produce this greyscale image has a cell size of 0.00083 degrees (approximately 80m). This greyscale image shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The image can also be used to locate structural features such as dykes.

  • Magnetotelluric (MT) measures the natural variations of the Earth’ magnetic and electrical (telluric) fields. In 2018, MT data including broadband and audio-magnetotelluric data were collected across the Olympic Domain in South Australia. MT data at 327 sites with spacings from ~1.5km to ~10km were collected by contractor Zonge Engineering and Research Organisation Australia, on behalf of Geological Survey of South Australia and Geoscience Australia. The survey was funded by the Geological Survey of South Australia's PaceCopper Initiative. Six extra MT stations (MASLIN1-6) were collected and funded by Investigator Resources Ltd. They were provided by Geological Survey of South Australia. This data package contains 333 processed edi files across the Olympic Domain in South Australia.

  • This paper presents a methodology for post-earthquake probabilistic risk (of damage) assessment that we propose in order to develop a computational tool for automatic or semi-automatic assessment. The methodology utilizes the same so-called risk integral which can be used for pre-earthquake probabilistic assessment. The risk integral couples (i) ground motion hazard information for the location of a structure of interest with (ii) knowledge of the fragility of the structure with respect to potential ground motion intensities. In the proposed post-mainshock methodology, the ground motion hazard component of the risk integral is adapted to account for aftershocks which are deliberately excluded from typical pre-earthquake hazard assessments and which decrease in frequency with the time elapsed since the mainshock. Correspondingly, the structural fragility component is adapted to account for any damage caused by the mainshock, as well as any uncertainty in the extent of this damage. The result of the adapted risk integral is a fully-probabilistic quantification of post-mainshock seismic risk that can inform emergency response mobilization, inspection prioritization, and reoccupancy decisions.

  • Remotely sensed datasets provide fundamental information for understanding the chemical, physical and temporal dynamics of the atmosphere, lithosphere, biosphere and hydrosphere. Satellite remote sensing has been used extensively in mapping the nature and characteristics of the terrestrial land surface, including vegetation, rock, soil and landforms, across global to local-district scales. With the exception of hyper-arid regions, mapping rock and soil from space has been problematic because of vegetation that either masks the underlying substrate or confuses the spectral signatures of geological materials (i.e. diagnostic mineral spectral features), making them difficult to resolve. As part of the Exploring for the Future program, a new barest earth Landsat mosaic of the Australian continent using time-series analysis significantly reduces the influence of vegetation and enhances mapping of soil and exposed rock from space. Here, we provide a brief background on geological remote sensing and describe a suite of enhanced images using the barest earth Landsat mosaic for mapping surface mineralogy and geochemistry. These geological enhanced images provide improved inputs for predictive modelling of soil and rock properties over the Australian continent. In one case study, use of these products instead of existing Landsat TM band data to model chromium and sodium distribution using a random forest machine learning algorithm improved model performance by 28–46%. <b>Citation:</b> Wilford, J. and Roberts, D., 2020. Enhanced barest earth Landsat imagery for soil and lithological modelling. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The Australian Geothermal Association compiled data on the installed capacity of direct-use geothermal and geoexchange systems in Australia, including large-scale ground source heat pumps and hot sedimentary applications through to December 2018. Large-scale direct-use hot sedimentary aquifer systems includes systems to heat swimming pools or provide hydronic heating systems. In geoexchange systems, the Earth acts as a heat source or a heat sink, exploiting the temperature difference between the surface (atmosphere) and at depth. The temperature of the Earth just a few metres below the surface is much more consistent than atmospheric temperature, especially in seasonal climates. These resources do not require the addition of geothermal heat.

  • The Exploring for the Future program is an initiative by the Australian Government dedicated to boosting investment in resource exploration in Australia. As part of the Exploring for the Future program, this study aims to improve our understanding of the petroleum resource potential of northern Australia. The physical properties of organic matter in sedimentary rocks changes composition in an irreversible and often sequential manner after burial, diagenesis, catagenesis and metagenesis with increasing thermal maturity. Characterising these changes and identifying the thermal maturity of sedimentary rocks is essential for calculating thermal models needed in a petroleum systems analysis. This study presents organic petrology on 15 Proterozoic aged shales from the Velkerri and Barney Creek formations in the McArthur Basin and the Mullera Formation, Riversleigh Siltstone, Lawn Hill and Termite Range formations in the South Nicholson region. Qualitative maceral analysis of the 15 samples are described in addition to bitumen reflectance measurements. These samples were analysed at the Montanuniversität Leoben, Austria in June 2020. The results of this study can be used to improve our understanding of the thermal maturity and hydrocarbon prospectivity of Proterozoic aged sedimentary basins in northern Australia.

  • Presentation slides and speaking notes are provided for a presentation that was given online on Wednesday 7th October 2020, 11:00 to 12:00 AEDT time (UTC +11). The presentation coincided with the release of two products; (1) a new web page for the Australian Fundamental Gravity Network (AFGN), and (2) the 2019 Australian National Gravity Grids (eCat Record 133023). Not mentioned as a separate item, the presentation drew heavily on material in the Explanatory Notes for the gravity grids (eCat Record 144233) which was also released on this day. The presentation was pitched at the level of a general audience. It commenced with an introduction to gravity, and how it changes from one place to another in step with different geological units. The subjects of 2-dimensional digital grids and how coloured images are derived from them were then covered as a prelude to later material. The speakers then described first of the two main topics - the Australian Fundamental Gravity Network (AFGN) and its importance when producing the 2019 Australian National Gravity Grids. The AFGN is a series of gravity benchmarks that allow gravity surveys to be linked to the Australian Absolute Gravity Datum 2007 (AAGD07). This makes it possible for the many separate gravity data sets that have been acquired in Australia to be combined into a seamless whole. Gravity data from 1308 ground surveys and 14 blocks of airborne gravity and airborne gravity gradiometry have been combined with offshore gravity data from satellite altimetry to form the 2019 Australian National Gravity Grids. This marks the first time that airborne data have been incorporated into the national gravity grids. It is also the first time that the offshore data have been fully processed alongside the onshore data. Grids of three types of gravity anomalies were produced; Free Air Anomaly (FAA), Complete Bouguer Anomaly (CBA), and De-trended Global Isostatic Residual (DGIR). During the presentation, various comparisons were made illustrating the improvements made with the 2019 grids in comparison with the previous 2016 grids and the benefits of incorporating airborne data into the grids. The gravity grids were produced to assist those involved in geological mapping and exploration, and it is hoped that the new grids will inspire users to revisit their geological interpretations and to aid explorers to identify new opportunities and to more efficiently focus their efforts on prospective ground. The presentation was recorded, and the recording of the presentation is available on demand on the Geoscience Australia YouTube Channel at Introductions were made by Marina Costelloe. The event was controlled by Chris Nelson, and the recording was edited by Douglas Warouw. Note that there are some minor differences between the presentation material given here and the presentation seen in the video recording. These changes were made in the interest of clarity and include the removal of “animation” effects and the provision of some additional text. Speaker Biography for Richard Lane; Richard joined Geoscience Australia in 2001 after a career as a mineral and petroleum geophysicist with CRA Exploration / Rio Tinto and as the Program Leader responsible for the development of the TEMPEST AEM system in CRC AMET. As a Senior Geophysicist in the Geophysical Acquisition and Processing Section, he has been evaluating the role of airborne gravity and airborne gravity gradiometry on a national scale. He is an ASEG Gold Medal recipient, a Society of Exploration Geophysicists Honorary Lecturer, and a Distinguished Geoscience Australia Lecturer. Speaker Biography for Phillip Wynne; Phillip has been with GA for over twenty years. In that time, he has been involved in all aspects of regional gravity surveys. He currently oversees gravity surveys conducted by GA and Australian States and Territories and manages the Australian Fundamental Gravity Network.

  • At far-field coasts the largest tsunami waves often occur many hours after arrival, and hazardous waves may persist for more than a day. To simulate tsunamis at far-field coasts it is common to combine high-resolution nonlinear shallow water models (covering sites of interest) with low-resolution reduced-physics global-scale models (to efficiently simulate propagation). The global propagation models often ignore friction and are mathematically energy conservative, so in theory the modelled tsunami will persist indefinitely. In contrast, real tsunamis exhibit slow dissipation at the global-scale with an energy e-folding time of approximately one day. How strongly do these global-scale approximations affect nearshore tsunamis simulated at far-field coasts? To investigate this issue we compare modelled and observed tsunamis at sixteen nearshore tide-gauges in Australia, which were generated by the following earthquakes: Mw 9.5 Chile 1960; Mw 9.2 Sumatra 2004; Mw 8.8 Chile 2010; Mw 9.1 Tohoku 2011; and Mw 8.3 Chile 2015. Each historic tsunami is represented with multiple earthquake source models from the literature, to prevent bias in any single source from dominating the results. The tsunami is simulated for 60 hours with a nested global-to-local model. On the nearshore grids we solve the nonlinear shallow water equations with Manning-friction, while on the global grid we test three reduced-physics propagation models which combine the linear shallow water equations with alternative treatments of friction: 1) frictionless; 2) nonlinear Manning-friction; and 3) constant linear-friction. In comparison with data, the frictionless global model works well for simulating nearshore tsunami maxima for ~ 8 hours after tsunami arrival, and Manning-friction gives similar predictions in this period. Constant linear-friction is found to under-predict the size of early arriving waves. As the simulation duration is increased from 36 to 60 hours, the frictionless global model increasingly over-estimates the observed tsunami maxima; whereas both models with global-scale friction perform relatively well. The constant linear-friction model can be improved using delayed linear-friction, where propagation is simulated with an initial frictionless period (12 hours herein). This prevents the systematic underestimation of early nearshore wave heights. While nonlinear Manning-friction offers comparably good performance, a practical advantage of the linear-friction models in this study is that their solutions can be computed, to high accuracy, with a simple transformation of frictionless solutions. This offers a pragmatic approach to improving unit-source based global tsunami simulations at late times.

  • The Geological Survey of Western Australia, in collaboration with the Australian National University, Macquarie University, the Department of Fire and Emergency Services and Geoscience Australia has just installed the first seismometers of an array across the South West Seismic Zone of Western Australia. This region is one of the most seismically active areas of Australia having experienced over 2000 small (between ML 2 to 3) earthquakes since the year 2000. Many smaller events are also noted by the local people who often hear them coming. Yes – hear them coming – this area is known for its “noisy” earthquakes. Most of these earthquakes occur in swarms rather than main shock-aftershock sequences (Dent, 2015). This means that the region experiences a lot of small earthquakes, all much the same size and which occur in a similar area. These swarms can be active for years. The hazard associated with these seismic events is relatively small. However, in the past six decades this region has also hosted five of the nine surface rupturing earthquakes in Australia, most notably; Meckering (M 6.5) in 1968 from which there are photos of the bends in the railway lines (Fig 1a) and faulting of 2-3 m in height across the fields (Fig 1b) (Gordon and Lewis 1980; Johnston and White 2018, Clark and Edwards 2018); Calingiri (M5.9) in 1970 and Lake Muir (M5.6), which was felt by a lot of people across Western Australia just two years ago (Clark et al. 2020). Despite the high rates of seismicity, seismic monitoring in the region remains relatively sparse. To overcome this lack of instrumentation, the consortium of institutions mentioned above, came together for an ARC Linkage project to put in place a temporary network- the South West Australia Network (SWAN) - to improve the monitoring and detection capabilities in this area. This project will see a total of twenty-five broadband seismometers deployed across the Southwest of Western Australia for a period of approximately 2 years (Fig 2a and b). This temporary array will enable the detection and location of smaller-magnitude earthquakes which can be used to improve the crustal velocity models which in turn enables more accurate earthquake locations and helps the understanding of the crustal structure of this part of Australia. Better velocity models also enable better magnitude calculation methods, which improve the knowledge about recurrence of earthquakes of a certain magnitude. From a seismic hazard point of view, this data has the potential to assist in the development of improved methods for modelling how shaking intensity varies as it propagates through the earth’s crust from the earthquake source. Overall, this information will feed into an improved understanding of the earthquake hazard in the Southwest region of Western Australia. For local communities, it will provide an improved situational awareness following significant earthquakes. More broadly, the improved understanding of the seismicity of the Southwest of Western Australia will enhance emergency response capabilities, and inform building codes and mitigation initiatives, which are the best methods we have to minimise the earthquake risks to communities. Data will be released through AusPASS, the Australian Passive Seismic Server two years after the last data has been collected.

  • The main part of this map is a Hue-Saturation-Intensity (HSI) image of De-trended Global Isostatic Residual Gravity data (DGIR) based on the B Series of the 2019 Australian National Gravity Grids. This series of grids represent the combination of 1.4 million ground gravity observations stored in the Australian National Gravity Database (ANGD) as of September 2019; 345,000 line km of Airborne Gravity and 106,000 line km of gravity gradiometry data in the National Australian Geophysical Database (NAGD), and the Global Gravity Grid developed at Scripps Institution of Oceanography, University of California at San Diego using data from the United States SIO, NOAA and NGA. The ground and airborne gravity data have been acquired by the Commonwealth, State and Territory Governments, the mining and exploration industry, universities and research organisations from the 1940’s to the present day. The shading of the image is from the northwest and the colour scale is linear from -500 µm.s-2 (blue) to +500 µm.s-2 (red).