From 1 - 10 / 121
  • The Walloon Coal Measures (WCM) in the Clarence-Moreton and the Surat basins in Qld and northern NSW contain up to approximately 600 m of mudstone, siltstone, sandstone and coal. Wide-spread exploration for coal seam gas (CSG) within both basins has led to concerns that the depressurisation associated with the resource development may impact on water resources in adjacent aquifers. In order to predict potential impacts, a detailed understanding of sedimentary basins hydrodynamics that integrates geology, hydrochemistry and environmental tracers is important. In this study, we show how different hydrochemical parameters and isotopic tracers (i.e. major ion chemistry, dissolved gas concentrations, 13C-DIC, 18O, 87Sr/86Sr, 3H, 14C, 2H and 13C of CH4) can help to improve the knowledge on groundwater recharge and flow patterns within the coal-bearing strata and their connectivity with over- or underlying formations. Dissolved methane concentrations in groundwaters of the WCM in the Clarence-Moreton Basin range from below the reporting limit (10 µg/L) to approximately 50 mg/L, and samples collected from nested bore sites show that there is also a high degree of vertical variability. Other parameters such as groundwater age measurements collected along distinct flow paths are also highly variable. In contrast, 87Sr/86Sr isotope ratios of WCM groundwaters are very uniform and distinct from groundwaters contained in other sedimentary bedrock units, suggesting that 87Sr/86Sr ratios may be a suitable tracer to study hydraulic connectivity of the Walloon Coal Measures with over- or underlying aquifers, although more studies on the systematic are required. Overall, the complexity of recharge processes, aquifer connectivity and within-formation variability confirms that a single tracer that cannot provide all information necessary to understand aquifer connectivity in these sedimentary basins, but that a multi-tracer approach is required.

  • Changes in microbial diversity and population structure occur as a result of increased nutrient loads and knowledge of microbial community composition may be a useful tool for assessing water quality in coastal ecosystems. However, the ability to understand how microbial communities and individual species respond to increased nutrient loads is limited by the paucity of community-level microbial data. The microbial community composition in the water column and sediments was measured across tropical tidal creeks and the relationship with increased nutrient loads assessed by comparing sewage-impacted and non-impacted sites. Diversity-function relationships were examined with a focus on denitrification and the presence of pathogens typically associated with sewage effluent tested. Significant relationships were found between the microbial community composition and nutrient loads. Species richness, diversity and evenness in the water column all increased in response to increased nutrient loads, but there was no clear pattern in microbial community diversity in the sediments. Water column bacteria also reflected lower levels of denitrification at the sewage-impacted sites. The genetic diversity of pathogens indicated that more analysis would be required to verify their status as pathogens, and to develop tests for monitoring. This study highlights how microbial communities respond to sewage nutrients in a tropical estuary. Estuarine, Coastal and Shelf Science

  • In June 2012 Geoscience Australia was commissioned by Commonwealth Scientific and Industrial Research Organisation (CSIRO) to undertake detailed wind hazard assessments for 14 Pacific Island countries and East Timor as part of the Pacific-Australia Climate Change Science and Adaptation Planning (PACCSAP) program. PACCSAP program follows on from work Geoscience Australia did for the Pacific Climate Change Science Program (PCCSP) looking at CMIP3 generation of climate models. The objective of this study is to improve scientific knowledge by examining past climate trends and variability to provide regional and national climate projections. This document presents results from current and future climate projections of severe wind hazard from tropical cyclones for the 15 PACCSAP partner countries describing the data and methods used for the analysis. The severe wind hazard was estimated for current (1981 to 2000) and future (2081 to 2100) climate scenarios. Tropical-cyclone like vortices from climate simulations conducted by CSIRO using six Coupled Model Intercomparison Project phase 5 (CMIP5) models (BCC-CSM1.1, NorESM1-M, CSIRO-Mk3.6, IPSL-CM5A, MRI-CGM3 and GFDL-ESM2M) as well as the International Best Track Archive for Climate Stewardship were used as input to the Geoscience Australia's Tropical Cyclone Risk Model to generate return period wind speeds for the 15 PACCSAP partner countries. The Tropical Cyclone Risk Model is a statistical-parametric model of tropical cyclone behaviour, enabling users to generate synthetic records of tropical cyclones representing many thousands of years of activity. The 500-year return period wind speed is analysed and discussed into more details in this report, since it is used as a benchmark for the design loads on residential buildings. Results indicate that there is not a consistent spatial trend for the changes in 500-year cyclonic wind speed return period when CMIP5 models are compared individually. BCC-CSM1M and IPSL-CM5A presented an increase in the annual TC frequency for East Timor, northern hemisphere and southern hemisphere. On the other hand, NorESM1M showed a decrease in the annual TC frequency for the same areas. The other three models showed a mixed of increase and decrease in their annual TC frequency. When CMIP5 models were analysed by partner county capitals for the 500-year cyclonic wind speed return period, IPSL-CM5A and GFDL-ESM2M models presented an increase in the cyclonic wind speed intensity for almost all capitals analysed with exception of Funafuti (GFDL-ESM2M), which presented a decrease of 0.7% and Honiara (IPSL-CM5A) with a decrease of 1.6%. The tropical cyclone annual frequency ensemble mean indicates an increase in the tropical cyclone frequency within all three regions considered in this study. When looking at individual capitals, a slight increase in the 500-year return period cyclonic wind speed ensemble mean varying between 0.8% (Port Vila) to 9.1% (Majuro) is noticed. A decline around 2.4% on average in the 500-year return period cyclonic wind speed ensemble mean is observed in Dili, Suva, Nukualofa and Ngerulmud. The ensemble spatial relative change did not show any particular consistency for the 500-year cyclonic wind speed. Areas where Marshall Islands and Niue are located presented an increase in the 500-year cyclonic wind speed while a decrease is observed in areas around South of Vanuatu, East of Solomon Islands, South of Fiji and some areas in Tonga. The information from the evaluation of severe wind hazard from tropical cyclones, together with other PACCSAP program outputs, will be used to build partner country capacity to effectively adapt and plan for the future and overcome challenges from climate change.

  • As part of the Australian Government's National CO2 Infrastructure Plan (NCIP), Geoscience Australia undertook a CO2 storage assessment of the Vlaming Sub-basin. The Vlaming Sub-basin a Mesozoic depocentre within the offshore southern Perth Basin located about 30 km west of Perth, Western Australia. The main depocentres formed during the Middle Jurassic to Early Cretaceous extension. The post-rift succession comprises up to 1500 m of a complex fluvio-deltaic, shelfal and submarine fan system. Close proximity of the Vlaming Sub-basin to industrial sources of CO2 emissions in the Perth area drives the search for storage solutions. The Early Cretaceous Gage Sandstone was previously identified as a suitable reservoir for the long term geological storage of CO2 with the South Perth Shale acting as a regional seal. The Gage reservoir has porosities of 23-30% and permeabilities of 200-1800 mD. The study provides a more detailed characterisation of the post Valanginian Break-up reservoir - seal pair by conducting a sequence stratigraphic and palaeogeographic assessment of the SP Supersequence. It is based on an integrated sequence stratigraphic analysis of 19 wells and 10, 000 line kilometres of 2D reflection seismic data, and the assessment of new and revised biostratigraphic data, digital well logs and lithological interpretations of cuttings and core samples. Palaeogeographies were reconstructed by mapping higher-order prograding packages and establishing changes in sea level and sediment supply to portray the development of the delta system. The SP Supersequence incorporates two major deltaic systems operating from the north and south of the sub-basin which were deposited in a restricted marine environment. Prograding clinoforms are clearly imaged on regional 2D seismic lines. The deltaic succession incorporates submarine fan, pro-delta, delta-front to shelfal, deltaic shallow marine and fluvio-deltaic sediments. These were identified using seismic stratigraphic techniques and confirmed with well ties where available. The break of toe slope was particularly important in delineating the transition between silty slope sediments and fine-grained pro-delta shales which provide the seal for the Gage submarine fan complex. As the primary reservoir target, the Gage lowstand fan was investigated further by conducting seismic faces mapping to characterise seismic reflection continuity and amplitude variations. The suitability of this method was confirmed by obtaining comparable results based on the analysis of relative acoustic impedance of the seismic data. The Gage reservoir forms part of a sand-rich submarine fan system and was sub-divided into three units. It ranges from canyon confined inner fan deposits to middle fan deposits on a basin plain and slump deposits adjacent to the palaeotopographic highs. Directions of sediment supply are complex. Initially, the major sediment contributions are from a northern and southern canyon adjacent to the Badaminna Fault Zone. These coalesce in the inner middle fan and move westward onto the plain producing the outer middle fan. As time progresses sediment supply from the east becomes more significant. Although much of the submarine fan complex is not penetrated by wells, the inner fan is interpreted to contain stacked channelized high energy turbidity currents and debris flows that would provide the most suitable reservoir target due to good vertical and lateral sand connectivity. The middle outer fan deposits are predicted to contain finer-grained material hence would have poorer lateral and vertical communication.

  • Marine seismic surveys are a fundamental tool for geological research, including the exploration of offshore oil and gas resources, but the sound generated during these surveys represents a major source of noise pollution in the marine environment. Recent evidence has shown that seismic surveys may negatively affect some cetaceans, fish and invertebrates, although the magnitude of these impacts remains uncertain. This paper applies a case study on marine seismic impacts (the Gippsland Marine Environmental Monitoring (GMEM) project) to the critical assessment of the advantages and challenges of a multi-faceted field-based approach in the context of future research and management priorities. We found that multiple experimental components, including both conventional and innovative methods, facilitate an interdisciplinary approach and also provide a failsafe in case of limited suitable data. Field observational studies provide an unparalleled level of ecological realism, although their practical challenges must be considered during research planning. We also note the need for appropriate environmental baselines and accessible time-series data to account for spatiotemporal variability of environmental and biological parameters that may mask effects, as well as the need for a standardised technique in sound monitoring and equipment calibration to ensure accuracy and comparability among studies. <b>Citation:</b> Rachel Przeslawski, Brendan Brooke, Andrew G. Carroll, Melissa Fellows, An integrated approach to assessing marine seismic impacts: Lessons learnt from the Gippsland Marine Environmental Monitoring project, <i>Ocean & Coastal Management</i>, Volume 160, 2018, Pages 117-123, ISSN 0964-5691, https://doi.org/10.1016/j.ocecoaman.2018.04.011.

  • Poster for IAH 2013 A major concern for regulators and the public with geological storage of CO2 is the potential for the migration of CO2 via a leaky fault or well into potable groundwater supplies. Given sufficient CO2, an immediate effect on groundwater would be a decrease in pH which could lead to accelerated weathering, an increase in alkalinity and the release of major and minor ions. Laboratory and core studies have demonstrated that on contact with CO2 heavy metals can be released under low pH and high CO2 conditions (particularly Pd, Ni and Cr). There is also a concern that trace organic contaminants could be mobilised due to the high solubility of many organics in supercritical CO2. These scenarios potentially occur in a high CO2 leakage event, therefore detection of a small leak although barely perceptible could provide an important early warning for a subsequent and more substantial impact.

  • The National Exposure Information System (NEXIS) is a unique modelling capability designed by Geoscience Australia (GA) to provide comprehensive and nationally-consistent exposure information in response to the 2003 COAG commitment to cost-effective, evidence-based disaster mitigation. Since its inception, NEXIS has continually evolved to fill known information gaps by improving statistical methodologies and integrating the best publically-available data. In addition to Residential, Commercial and Industrial building exposure information, NEXIS has recently expanded to include exposure information about agricultural assets providing a wider understanding of how communities can be affected by a potential event. GA's collaboration with the Attorney General's Department (AGD) has involved the consolidation of location-based data to deliver consistent map and exposure information products. The complex information requirements emphasised the importance of having all relevant building, demographic, economic, agriculture and infrastructure information in NEXIS available in a clear and unified Exposure Report to aid decision-makers. The Exposure Report includes a situational map of the hazard footprint to provide geographic context and a listing of detailed exposure information consisting of estimates for number and potential cost of impacted buildings by use, agricultural commodities and cost, the number and social vulnerability of the affected population, and the number and lengths of infrastructure assets and institutions. Developed within an FME workbench, the tool accepts hazard footprints and other report specifics as input before providing an HTML link to the final output in approximately 5 minutes. The consolidation of data and streamlining of exposure information into a simple and uniform document has greatly assisted the AGD in timely evidence-based decision-making during the 2014-15 summer season.

  • The Evidence Based Decision Making (EBDM) paradigm encourages managers to base their decisions on the strongest available evidence, but it has been criticized for placing too much emphasis on the choice of study design method without considering the types of questions that are being addressed as well as other relevant factors such as how well a study is implemented. Here we review the objectives of Australia’s Marine Park network, and identify the types of questions and data analysis that would address these objectives. Critically, we consider how the design of a monitoring program influences our ability to adequately answer these questions, using the strength of evidence hierarchy from the EBDM paradigm to assess the adequacy of different design strategies and other sources of information. It is important for conservation managers to recognize that the types of questions monitoring programs are able to answer depends on how they are designed and how the collected data are analyzed. The socio-political process that dictates where protected areas are placed typically excludes the strongest types of evidence, Random Controlled Trials (RCTs), for certain questions. Evidence bases that are stronger than ones commonly employed to date, however, could be used to provide a causal inference, including for those questions where RCTs are excluded, but only if appropriate designs such as cohort or case-control studies are used, and supported where relevant by appropriate sample frames. Randomized, spatially balanced sampling, together with careful selection of control sites, and more extensive use of propensity scores and structured elicitation of expert judgment, are also practical ways to improve the evidence base for answering the questions that underlie marine park objectives and motivate long-term monitoring programs. <b>Citation:</b> Hayes KR, Hosack GR, Lawrence E, Hedge P, Barrett NS, Przeslawski R, Caley MJ and Foster SD (2019) Designing Monitoring Programs for Marine Protected Areas Within an Evidence Based Decision Making Paradigm.<i> Front. Mar. Sci</i>. 6:746. doi: 10.3389/fmars.2019.00746

  • Geoscience Australia produces optimized statistical predictions of seabed sediment distribution for the Australian continental Exclusive Economic Zone. These products are broadly relevant to the work of government policy and research organizations and the offshore oil and gas industry. To better promote the features and relevance of these products, we need to produce 1-3 posters. These will provide graphic examples of the spatial predictions, comparisons between previous and recent versions of this dataset to demonstrate the increase in accuracy and resolution achieved, and provide information about how to access the data. These posters will be used to promote this work at relevant external workshops and conferences. We also need to produce some simple A4 size pamphlets/flyers based on the posters, which can be easily carried and distributed to various audiences. This would increase the awareness of GA's products in marine environmental geosciences, boost the usage of the products by both internal and external clients and promote GA's profile in generating quality geoscience information.

  • Australia has one of the world’s largest marine estates and has recently established the largest network of marine protected areas in the world. As such, Australia is now uniquely placed to develop standardised national approaches to monitor the marine environment. We have therefore developed a suite of field manuals for the acquisition of marine data from a variety of frequently-used sampling platforms so that data is directly comparable in time and through space. This will then facilitate a national monitoring program in Australian waters, with a particular focus on Australian Marine Parks (AMPs). Due to the large geographic area, diverse flora and fauna, and range of environmental conditions represented by the Australian marine estate, a single method of sampling is neither practical nor desirable. For this reason, we present a standard operating procedure (SOP) for each of six key marine benthic (i.e. seafloor) sampling platforms that were identified based on their frequency of use in previous sampling and monitoring programs: • Multibeam sonar (MBES) provides bathymetry and backscatter data that are used to map the seafloor. • Autonomous Underwater Vehicles (AUVs) acquire high-resolution continuous imagery of the seafloor and its associated habitats and organisms. • Benthic Baited Remote Underwater Video (BRUV) systems acquire video of demersal fish attracted to a baited camera system dropped to the seafloor. • Pelagic BRUVs acquire video of pelagic fish and other fauna that are attracted to a baited camera system suspended in the water column. This platform is included as an emergent sampling method for pelagic ecosystems. • Towed cameras acquire video or still imagery of the seafloor and its associated habitats and organisms. • Grabs and box corers collect sediment samples that can be analysed for biological, geochemical, or sedimentological variables. • Sleds and trawls collect benthic or demersal fauna near the seafloor. The main challenge in the development of these manuals was to find a balance between being overly prescriptive (such that everyone follows their existing protocols and ignores the manuals) and overly flexible (such that data is not consistent and therefore not comparable). A collaborative approach was paramount to addressing this concern. Ultimately, over 60 individuals from 28 organisations contributed to the field manual package. By engaging researchers, managers, and technicians from multiple agencies with a variety of experience, sea time, and subject matter expertise, we strove to ensure the field manuals represented the broader marine science community of Australia. This not only improved the content but also increased the potential for adoption across multiple agencies and monitoring programs. Future work is based on the understanding that SOPs should be periodically checked and revised, lest they become superseded or obsolete. Resources are available to develop a Version 2 of this field manual package, due for completion in late 2018. As part of this version, a long-term plan for managing the field manuals will be developed, including maintenance and version control.