From 1 - 10 / 1201
  • The coverage of this dataset is over the Taree region . The C3 LAS data set contains point data in LAS 1.2 format sourced from a LiDAR ( Light Detection and Ranging ) from an ALS50 ( Airborne Laser Scanner ) sensor . The processed data has been manually edited to achieve LPI classification level 3 whereby the ground class contains minimal non-ground points such as vegetation , water , bridges , temporary features , jetties etc . Purpose: To provide fit-for-purpose elevation data for use in applications related to coastal vulnerability assessment, natural resource management ( especially water and forests) , transportation and urban planning . Additional lineage information: This data has an accuracy of 0.3m ( 95 confidence ) horizontal with a minimum point density of one laser pulse per square metre. For more information on the data's accuracy, refer to the lineage provided in the data history .

  • These datasets cover approximately 5030 sq km over all of the Scenic Rim Regional Council and were captured as part of the 2011 Scenic Rim LiDAR project. This project, undertaken by Terranean Mapping Technologies on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 1 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, vegetation or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 1 metre Digital Elevation Model (DEM) in ESRI GRID grid - 0.25 metre contours in ESRI Shape

  • Joint Release of the National ASTER geoscience maps at IGC The ASTER (Advanced Spaceborne Thermal Emission and Reflectance Radiometer) Geoscience Maps are the first public, web-accessible, continent-scale product release from the ASTER Global Mapping data archive. The collaborative Australian ASTER Initiative represents a successful multi-agency endeavour, led by the Western Australian Centre of Excellence for 3D Mineral Mapping (C3DMM) at CSIRO, Geoscience Australia and the State and Territory government geological surveys of Australia, along with other national and international collaborators. National ASTER geoscience map These geoscience maps are released in GIS format as 1:1M map-sheet tiles, from 3,000 ASTER scenes of 60x60km. Each scene was cross-calibrated and validated using independent Hyperion satellite imagery. The new ASTER geoscience products range in their application from local to continental scales, and their uses include mapping of soils for agricultural and environmental management, such as estimating soil loss, dust management and water catchment modelling. They will also be useful for resource exploration, showing host rock, alteration and regolith mineralogy and providing new mineral information at high spatial resolution (30m pixel). This information is not currently available from other pre-competitive geoscience data.

  • The potential for geochemical reactions to cause aquifer clogging or detrimental water quality changes was assessed for a managed aquifer recharge (MAR) target in the Darling River floodplain. The assessment used ambient groundwater quality from the target Calivil Formation aquifer, as well as from the shallow unconfined aquifers; Darling River source water quality; and mineralogy and geochemistry of sonic-cored aquifer samples. PHREEQC was used to examine the impact of mixing and interaction between these end-members. There is considerable variability in the redox state within the Calivil aquifer, with groundwater pe values ranging from -6 to 8. PHREEQC simulations using the median pe value of 3 resulted in super-saturation with respect to Fe(OH)3 . Hence, injection of an oxygenated source water into anoxic zones within the target aquifer can result in iron clogging due to precipitation of any source water dissolved iron and any Fe(II) oxidation in the sediments (in pyrite or displaced from exchange sites). The amount of Fe(II) within the storage zone available to be oxidised is unknown and may be limited given that Fe(III) oxides were present in the core material. The aquifer material contains species that may be released during MAR, including aluminium, arsenic, fluoride, iron, manganese, molybdenum, nickel, selenium and uranium. Injection of source water with elevated dissolved organic carbon (DOC) could enhance metal and metalloid release through reductive dissolution of iron oxides within the storage zone. The fate of any mobilised trace species would be dictated by storage zone redox conditions. Arsenic and molybdenum are likely to be adsorbed to any iron oxide surfaces under oxic conditions. Uranium and selenium are likely to reprecipitate in anoxic zones. This provides the opportunity for natural treatment within the storage zone to control mobilised trace metal species.

  • This report presents new SHRIMP U-Pb zircon results for twelve rocks from central, southeastern Queensland (Figure i and Table i). The work was carried out under the auspices of the National Geoscience Agreement (NGA) between Geoscience Australia and the Geological Survey of Queensland.

  • Concern about the impact of ocean acidification on organisms secreting high magnesium calcite skeletons has led to renewed interest in the mineralogy of these organisms. The identification of minerals making up the skeletons of tropical coralline algae, and in particular the determination of the Mg-content of calcite, is most commonly performed with X-ray diffraction. This method, based on XRD peak position, attracted criticism in the past because it produced Mg-contents that were in some cases lower compared to those based on chemical analyses of the bulk sample (in solution). The recent discovery of dolomite and magnesite in living coralline algae skeletons in addition to Mg-calcite explained this issue, and it is our goal in the present study to reinstate XRD as a reliable, quick and affordable method for the study of the mineral make-up of coralline algae species. In this paper we review the history of mineralogical analyses on tropical coralline algae and identify physical preparation methods that can affect results. We build on existing XRD methods to develop simple sampling and analytical methods to identify the presence of dolomite and magnesite, and numerically assess peak asymmetry that is caused by the overlapping reflections of calcite, dolomite and magnesite. These methods do not require specialist crystallographic knowledge or expensive or time consuming processes. The additional information our methods produce can be used to study intra-cellular calcification, and helps to rapidly assess and compare the mineral make-up of large numbers of samples. We conclude that XRD should be an integral part of any mineralogical analysis of coralline algae skeletons, which may be composed of not only Mg-calcite (Ca1.0-0.6Mg0-0.4CO3), but also dolomite (Ca0.5Mg0.5CO3), magnesite (MgCO3) and aragonite (CaCO3).

  • Geoscience Australia has recently completed a marine survey in the offshore northern Perth Basin, off Western Australia (Jones et al., 2011b; Jones, 2011c, Upton and Jones, 2011). One of the principal aims of the survey was the collection of evidence for natural hydrocarbon seepage. The survey formed part of a regional reassessment of the basin's petroleum prospectivity in support of frontier exploration acreage Release Area W11-18. This reassessment was initiated under the Australian Government's Offshore Energy Security Program and formed part of Geoscience Australia's continuing efforts to identify a new offshore petroleum province. The offshore northern Perth Basin was identified as a basin with new frontier opportunities. New data demonstrated that proven onshore-nearshore petroleum system is also effective and widespread in the offshore (Jones et al., 2011a). Evidence for a Jurassic petroleum system was also demonstrated in the Release Area W11-18 (Jones et al., 2011a). The marine survey results provide additional support for the presence of an active petroleum system in the northern Perth Basin.

  • The Australian Solid Earth and Environment Grid (SEEGrid) is an eResearch infrastructure established to link diverse and distributed datasets in the geosciences, enable seamless interoperability between these, and undertake remote data processing. We present an integration between the GPlates plate-tectonic geographic information system and SEEGrid. Such a linkage is for the first time providing the necessary computational aids for abstracting an enormous level of complexity required for frontier solid-Earth research, in particular 4D metallogenesis. We present a continental reconstruction case study involving a proterozoic link between the greater Northern and Southern Australian cratons by combining evidence from several data sets. Faults are extracted from SEEGrid via Web Feature Services, and are used in conjunction with gravity anomaly data to test competing spatial alignment models of the reconstructed cratons. Additional information obtained from palaeomagnetic poles, granite geochemistry, geochronology, age-dated igneous provinces and other geophysics datasets can be used to further constrain the reconstruction. The metallogenic consequences of the best-fit reconstruction are profound, since they raises the possibility that the mineral systems hosting the giant Olympic dam, Broken Hill and Mt Isa could be linked in a particular geometry, resulting in a revised metallogenic map. The flexibility and extensibility of this spatio-temporal data analysis platform lends itself to a wide range of use-cases, including linking high-performance geodynamic modelling to kinematic reconstructions, creating the framework for future 3D and 4D metallogenic maps.

  • Hydrogeology of East Timor