From 1 - 10 / 1023
  • Catchment outlet sediments (0-10 cm depth, sieved to <2 mm) collected at a very low density over most of the Australian continent have been analysed using the Mobile Metal Ion (MMI®) partial extraction technique. Of the 54 elements analysed, eight are generally regarded as essential nutrients for plant growth: Ca, Cu, Fe, K, Mg, Mn, P and Zn. For these, 'bioavailability', defined here as the ratio of the partial digest concentration to the total concentration, has been investigated. This estimation of 'bioavailability' gives results comparable with standard agricultural measurements. Average 'bioavailability' ranges from 15.0% for Ca to 0.1% for Fe. Smoothed (kriged) colour contour maps for continental Australia have been produced for these eight nutrients and interpreted in terms of lithology (e.g., presence of carbonates in the MMI® Ca map), mineralization (e.g., well known and possibly less known mineral districts in the Cu, P and Zn maps), environmental processes (e.g., salinity in K map, weathering and acid generation in Fe map) and agricultural practices (e.g., application of fertilizers in P and Zn maps). This first application of a partial extraction technique at the scale of a continent has yielded meaningful, coherent and interpretable results.

  • Three seismic lines (10GA-CP1, 10GA-CP2 and 10GA-CP3), which cross north to south across the Capricorn Orogen of Western Australia, have recently been collected by Geoscience Australia, ANSIR and the Geological Survey of Western Australia. The interpretation of these seismic lines is aimed at providing insight into the geologic structure of the Capricorn Orogen and to explore the relationship between the Pilbara and Yilgarn cratons. To aid in further interpretation and to add value to the seismic data an analysis of the available potential field data (gravity and magnetics) has also been undertaken. A range of geophysical data analysis techniques have been applied and include: multi-scale edge detection (worms), forward modelling and 3D inversion. By applying all three analysis techniques to the potential-field data major trends, contrasting properties and regional blocks relating to the subsurface geology have been determined, in turn, allowing for a detailed comparison with the seismic interpretation. Note that all results referred to in this abstract are preliminary and subject to change.

  • Part of Ministerial submission includes 4 maps in GeoCat Record 71221 Not for sale or public distribution Manager LOSAMBA project, EGD

  • This is a placeholder record only. The product may be released by GA in the future, but at the moment we are only hosting the metadata.

  • Manila LiDAR Project 2011 Original Data Supply September 2011, provided by Fugro Spatial.

  • The OzCoasts web-based database and information system draws together a diverse range of data and information on Australia's coasts and its estuaries. Maps, images, reports and data can be downloaded and there are tools to assist with coastal science, monitoring, management and policy. The content is arranged into seven inter-linked modules: Search Data, Conceptual Models, Coastal Indicators, Habitat Mapping, Natural Resource Management, Landform and Stability Maps and Climate Change. The Climate Change module is the newest feature of the website and was developed in partnership with the Australian Government Department of Climate Change and Energy Efficiency. The module provides information and tools to help communicate the risks of sea-level rise and other potential impacts of climate change on coastal areas. It includes an elevation data and a modelling portal for access to existing and new elevation data and derived products, including sea level inundation maps for Perth to Mandurah, Melbourne, Sydney, Hunter and Central Coast & Brisbane and Gold Coast. The inundation footprints illustrate three sea level rise scenarios: a low (0.5m), medium (0.8m) and high (1.1m) scenario for a 2100 time period, with values based on IPCC projections (B1 and A1FI scenarios) and more recent science. OzCoasts will also soon deliver the Coastal Eutrophication Risk Assessment Tool (CERAT) for the NSW Department of Environment, Climate Change and Water, and the Australian Riverscape Classification Service (AURICL) for the Tropical Rivers and Coastal Knowledge (TRaCK) consortium. CERAT will help identify and prioritise land use planning decisions to protect and preserve the health of NSW estuaries. AURICL has a northern tropical focus, and is a dynamic and flexible system for classifying catchments and their rivers based on the similarity, or dissimilarity, of a wide range of parameters.

  • Map of Australia showing the distribution of black coal, brown coal and Coal Seam Gas bearing basins overlain by prohibited areas. This map and enlargements of the Sydney, Bowen/Surat and Arckaringa basins were provided to DoFD as part advice regarding CSG exploration and coal extraction on commonwealth lands. These maps and their subsets are in 'DRAFT' form and are for internal use only.

  • Geoscience Australia (GA) is currently undertaking a process of revising the Australian National Earthquake Hazard Map using modern methods and an updated catalogue of Australian earthquakes. This map is a key component of Australia's earthquake loading standard, AS1170.4. Here we present an overview of work being undertaken within the GA Earthquake Hazard Project towards delivery of the next generation earthquake hazard map. Knowledge of the recurrence and magnitude (including maximum magnitude) of historic and pre-historic earthquakes is fundamental to any Probabilistic Seismic Hazard Assessment (PSHA). Palaeoseismological investigation of neotectonic features observed in the Australian landscape has contributed to the development of a Neotectonic Domains model which describes the variation in large intraplate earthquake recurrence behaviour across the country. Analysis of fault data from each domain suggests that maximum magnitude earthquakes of MW 7.0-7.5±0.2 can occur anywhere across the continent. In addition to gathering information on the pre-historic record, more rigorous statistical analyses of the spatial distribution of the historic catalogue are also being undertaken. Earthquake magnitudes in Australian catalogues were determined using disparate magnitude formulae, with many local magnitudes determined using Richter attenuation coefficients prior to about 1990. Consequently, efforts are underway to standardise magnitudes for specific regions and temporal periods, and to convert all earthquakes in the catalogue to moment magnitude. Finally, we will review the general procedure for updating the national earthquake hazard map, including consideration of Australian-specific ground-motion prediction equations. We will also examine the sensitivity of hazard estimates to the assumptions of certain model components in the hazard assessment.

  • AMB is a dataset depicting the limits of Australia's maritime jurisdiction as set out under UNCLOS and relevant domestic legislation. To this extent, AMB provides a digital representation of the outer limit of the 12 nautical mile territorial sea, the 24 nautical mile contiguous zone, the 200 nautical mile Exclusive Economic Zone and Australia's Continental Shelf, as well as, the 3 nautical mile coastal waters. Where Australia has agreements with neighbouring countries these treaty lines are also included in the data. The dataset has been compiled by Geoscience Australia in consultation with other relevant Commonwealth Government agencies including the Attorney-General's Department, the Department of Foreign Affairs and Trade, as well as the Australian Hydrographic Office.

  • Extreme events in a changing climate A climate event is 'extreme' when it (or a series of events) occurs with greater intensity, frequency or duration than is normally expected. Every region of the world experiences extreme events from time to time and natural climate variability already produces extreme events in Tasmania. This includes heat waves, cold waves, floods, droughts and storms. Extreme events can have devastating and wide ranging effects on society and the environment, impacting infrastructure, agriculture, utilities, water resources and emergency planning.