From 1 - 10 / 491
  • AAM Hatch was engaged by Geoscience Australia to undertake a LiDAR survey over the BHMAR Phase 2 prject area, for the purpose of producing a DTM and vegetation structure analysis. The survey covers an area of approximately 7856 sqkm of the Lower Darling River, downstream from Wilcannia. LiDAR was acquired from a fixed wing aircraft between 19 June 2009 and 5 August 2009 with a vertical accuracy of 0.15m and horizontal accuracy of 0.25m in coordinated system GDA 94, MGA Zone 54 and vertical datum of AHD. File formats included las format and 1m DTM ESRI Grids in ArcGIS binary grid format. Producing a DTM and vegetation structure analysis for the BHMAR Phase 2 Project area for groundwater monitoring.

  • South East Queensand (SEQ) 2009 LiDAR data was funded by Queensland Department of Environment and Resource management (DERM) , which was captured and delivered by AAMHatch between March 25th 2009 and June 9th 2009. The project area covering 5300 sqkm was divided into three sub areas, namely South East Queensland Priority Area, Gold Coast and the Balance of SEQ. Data acquisition and post-processing has been controlled to achieve a vertical accuracy witihn 0.15m (RMS, 68% CI) and horizontal accuracy within 0.45 m. Horizontal coordinates are based upon Map Grid of Australia (MGA) Zone 56 projection. Vertical coordinates are referenced to Australian Height Datum (AHD). The data was captured with point density of 2.5 points per square metre and the data is available as mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing in 1km tiles and inundation contours (0.25m). A hydrologically conditioned and drainage enforced 2m DEM or HDEM has also been developed in 2010 as part of the Urban DEM project managed by the CRC for Spatial Information and Geoscience Australia. The HDEM was produced by SKM using the ANUDEM program. Hydrologic enforcement and conditioning has included the testing of data for sinks, the referencing of transport and hydrology vector layers for intersections and flow, and the use of high-resolution imagery for visual validation. The methodology for hydrologic enforcement has required deriving a stream network based on flow direction and accumulation, using TIN and ANUDEM processes to analyse sinks and artificial damming affects caused by objects such as roads, bridges and trees which have not been previously filtered. Break lines have been included via the insertion of culvert/drainage channels, which has been used to interpolate these features into the main DEM as descending grid values. All data are referenced to GDA94/MGA Zone 56.

  • Presented here is a method to create a 1-second Seamless Coastal Digital Elevation Model (SCDEM) from 1-meter resolution LiDAR-derived DEMs The process is used to make three surfaces using three statistics: -Mean - provides elevation for each cell -Range - an absolute indication of roughness or terrain variability for each cell -Standard Deviation - a normalised indication of roughness or terrain variability for each cell The Seamless Coastal DEM creation process can be broken into several phases: 1.Calculation of summary statistics and creation of DEMs for each survey area at the desired resolution (projected coordinate system) 2.Resampling all DEMs to 1-second (geographic coordinate system) 3.Identifying the area of least difference (seamline) using a delta-surface of overlapping survey areas 4.Re-shaping survey outlines along seamlines 5.Clipping summary statistic DEMs along re-shaped survey outlines 6.Mosaicking all surveys together into a seamless DEM The SCDEM creation process has been largely automated; scripts have been created to accomplish steps 1, 5 and 6 (which are the most time-intensive steps). Steps 2, 3, and 4 are conducted manually for each area where overlapping surveys exist. The SCDEM has been tested against the control points provided with the original LiDAR surveys, and it has been found to have a lower RMSE [2.02m] than any existing 1-second elevation datasets: the Shuttle Radar Topography Mission (SRTM) DEM [2.78m] and the smoothed version of the SRTM DEM [2.61m].

  • These datasets cover all of Redland City and are part of the 2009 South East Queensland LiDAR capture project. This project, undertaken by AAM Hatch Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 1 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.25 metre contours in ESRI Shape Purpose: To provide highly accurate elevation data for use in risk assessment, the management of natural disasters, infrastructure planning, developing strategies to support climate change, topographic mapping and modelling. Environment description: Language: eng Character set: unknown

  • These datasets cover approximately 1650 sq km in the central sector of the Bundaberg Regional Council and are part of the 2009 Capricorn Coast LiDAR capture project. This project, undertaken by Fugro Spatial Solutions Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 2 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - LAS ground classified returns in XYZ - LAS non-ground classified returns in XYZ - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ASCII grid - 1 metre Digital Elevation Model (DEM) in ESRI grid - 0.25 metre contours in ESRI Shape

  • Redland 2009 LiDAR survey was captured over the Redland City Council region between 25th March and 9th June 2009. The data was acquired by AAM Hatch (now AAMGroup) and funded by Queensland and Commonwealth governments. The data is licensed for use by all Commonwealth, State and Local Government. Data acquisition and post-processing has been controlled to achieve a vertical accuracy within 0.15m (RMS, 68% CI) and horizontal accuracy within 0.45 m. Horizontal coordinates are based upon Map Grid of Australia (MGA) Zone 56 projection. Vertical coordinates are referenced to Australian Height Datum (AHD). The data was captured with point density of 2.5 points per square metre and the data is available as mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing in 1km tiles. The data are available as a number of surface types, products and formats including: mass points, digital elevation model (DEM) and hydrologically enforced DEM (HDEM) for the low lying coastal areas. Redland DEM forms part of the Brisbane HDEM which is a combination of the Brisbane 2009 LiDAR, Redland 2009 LiDAR, Moreton Bay 2009 LiDAR and Logan 2009 LiDAR survey areas.

  • These datasets cover approximately 1100 sq km in the central sector of the Hinchinbrook Shire Council and over all of Orpheus Island and are part of the 2009 Tropical Coast LiDAR capture project. This project, undertaken by Fugro Spatial Solutions Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 2 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.25 metre contours in ESRI Shape

  • Darwin and surrounds LiDAR 2009 data was flown by Dugro Spatial Solutions Ltd between 4th and 5th of July 2009 as part of the Urban Digital Elevation Modelling in High Priority Areas Project funded by the Federal Department of Climate Change. Distibution of this product is in file format of 1km tiles, and 1m DEM data in ESRI floating point file format. The data has a horizontal accuracy of 0.15m (at one SD) and vertical accuracy of 0.2m (at one SD).

  • These datasets cover approximately 22 sq km over all of Wednesday Island within the Torres Strait Island Regional Council and are part of the 2010 Torres Strait Islands LiDAR capture project. This project, undertaken by Vekta Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 1 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, vegetation or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ASCII grid - 1 metre Digital Elevation Model (DEM) in ESRI grid - 0.25 metre contours in ESRI Shape

  • The data covers an area of approximately 4000 sq km in the Namoi Valley, located around Narrabri, NSW. The LiDAR was captured by RPS Spatial in September and October 2013 with a point density of two points per square metre. The specified accuracies; 30cm vertical and 80cm horizontal, were achieved and verified through a rigorous network of check points and base stations. A set of seamless products were produced including hydro-flattened bare earth DEMs, DSMs, Canopy Height Models (CHM) and Foliage Cover Models (FCM). The outputs of the project are compliant with National ICSM LiDAR Product Specifications and the NEDF.