From 1 - 10 / 362
  • The annual offshore petroleum exploration acreage release is part of the government’s strategy to promote offshore oil and gas exploration. Each year, the government invites companies to bid for the opportunity to invest in oil and gas exploration in Australian waters. The 2021 acreage release consists of 21 areas offshore of Western Australia, Victoria, Tasmania and the Ashmore and Cartier Islands.

  • This appendix provides a regional geological analysis and conceptualisation of the Cooper GBA region. It delivers information critical for the shale, tight and deep coal gas prospectivity assessment outlined in the petroleum prospectivity technical appendix (Lech et al., 2019), and for input into assessing the potential impacts on groundwater and surface water assets detailed in the hydrogeology (Evans et al., 2019) and hydraulic fracturing (Kear et al., 2019) technical appendices. The Cooper Basin is a Carboniferous to Triassic intracratonic basin in north-eastern South Australia and south-western Queensland. It has a total area of approximately 127,000 km2, of which about three quarters lies within Queensland and the remainder lies within South Australia. Section 2 provides a comprehensive inventory and review of existing open data and information for the Cooper GBA region relevant for the prospectivity assessment (see the petroleum prospectivity technical appendix (Lech et al., 2019)) and hydrogeological characterisation (see the hydrogeology technical appendix (Evans et al., 2019)). It includes discussion of the datasets incorporated in the data inventory. A broad range of datasets were utilised to develop a three-dimensional conceptualisation of the geological basin. These include: geographic and cultural datasets which details the location and nature of administrative boundaries, infrastructure and topography; and geological datasets such as surface geology and geological provinces, well and seismic data and geophysical data. A range of public domain publications, reports and data packages for the Cooper Basin are also utilised to characterise the basin architecture and evolution. Section 3 reviews the Cooper Basin’s geological setting and the GBA region’s basin evolution from pre-Permian basement to creation of the Cooper, Eromanga and Lake Eyre basins. Section 4 reviews the main structural elements of the Cooper Basin and how these relate to the basin’s stratigraphy and evolution. The base of the Cooper Basin succession sits at depths of up to 4500 m, and reaches thicknesses in excess of 2400 m. The Cooper Basin is divided into north-eastern and south-western areas, which show different structural and sedimentary histories, and are separated by a series of north-west–south-east trending ridges. In the south-west the Cooper Basin unconformably overlies lower Paleozoic sediments of the Warburton Basin, and includes three major troughs (Patchawarra, Nappamerri and Tenappera troughs) separated by ridges (the Gidgealpa–Merrimelia–Innamincka and Murteree ridges). The depocentres include a thick succession of Permian to Triassic sediments (the Gidgealpa and Nappamerri groups) deposited in fluvio-glacial to fluvio-lacustrine and deltaic environments. The north-eastern Cooper Basin overlies Devonian sediments associated with the Adavale Basin. Here the Permian succession is thinner than in the south-west, and the major depocentres, including the Windorah Trough and Ullenbury Depression, are generally less well defined. The Cooper Basin is entirely and disconformably overlain by the Jurassic–Cretaceous Eromanga Basin. In the Cooper GBA region the Eromanga Basin includes two major depocentres, the Central Eromanga Depocentre and the Poolowanna Trough, and exceeds thicknesses of 2500 m. Deposition within the Eromanga Basin was relatively continuous and widespread and was controlled by subsidence rates and plate tectonic events along the eastern margins of the Australian Plate. The Eromanga Basin is comprised of a succession of terrestrial and marine origin. It includes a basal succession of terrestrial sedimentary rocks, followed by a middle marine succession, then finally an upper terrestrial succession. The Lake Eyre Basin is a Cenozoic sedimentary succession overlying the Eromanga Basin, covering parts of northern and eastern South Australia, south-eastern Northern Territory, western Queensland and north-western New South Wales. The Lake Eyre Basin is subdivided into sub-basins, with the northern part of the Callabonna Sub-basin overlying the Cooper Basin. Here the basin is up to 300 m thick and contains sediments deposited from the Paleocene through to the Quaternary. Deposition within the Lake Eyre Basin is recognised to have occurred in three phases, punctuated by periods of tectonic activity and deep weathering. This technical appendix provides the conceptual framework to better understand the potential connectivity between the Cooper Basin and overlying aquifers of the Great Artesian Basin and to help understand potential impacts of shale, tight and deep coal gas development on water and water-dependent assets.

  • GA publication: Flyer AEIP, ELVIS, EM-LINK 2021

  • A dataset of potential geological sequestration sites has been compiled as part of the Australian Petroleum Cooperative Research Centre's GEODISC program. Sites have been identified across all Australian sedimentary basins.

  • AusAEM (WA) 2020-21, Earaheedy & Desert Strip Airborne Electromagnetic Survey The accompanying data package, titled “AusAEM (WA) 2020-21,Earaheedy & Desert Strip Airborne Electromagnetic Survey Blocks: TEMPEST® airborne electromagnetic data and GALEI conductivity estimates”, was released on 25 March 2021 by Geoscience Australia (GA) and the Geological Survey of Western Australia. The data represents the first phase of the AusAEM2020 (WA) survey flown with a fixed-wing aircraft by CGG Aviation (Australia) Pty. Ltd. under contract to Geoscience Australia, using the TEMPEST® airborne electromagnetic system. The survey was flown at a 20-kilometre nominal line spacing over the most eastern part of the state and down to the southern coast of Western Australia. The total area encompasses close to 32,680 line kilometres of newly acquired airborne electromagnetic geophysical data. CGG also processed the data. This package contains 14,279 line kilometres of the survey data, which have been quality-controlled, processed and inverted. The Earaheedy Block entailed approximately 6,407 line kilometres and the Desert Strip 7,870 line kilometres. The remaining data will be released as a separate package. Geoscience Australia and Western Australia (Department of Mines, Industry Regulation and Safety) commissioned the AusAEM 2020 survey as part of the national airborne electromagnetic acquisition program, to complete 20km line separation AEM coverage over WA. The program is designed to deliver freely available pre-competitive geophysical data to assist in the investigation and discovery of potential mineral, energy and groundwater resources within Australia. Funding for the survey came from the Western Australian government’s Exploration Incentive Scheme. GA managed the survey data acquisition, processing, contracts, quality control of the survey and generated the inversion products included in the data package. The data release package contains 1. A data release package summary PDF document. 2. The survey logistics and processing report and TEMPEST® system specification files 3. ESRI shapefiles for the regional and infill flight lines 4. Final processed point located line data in ASEG-GDF2 format 5. Conductivity estimates generated by CGG’s EMFlow conductivity-depth transform -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -Grids generated from CGG's inversion conductivity-depth transform in ER Mapper® format (layer conductivities) 6. Conductivity estimates generated by Geoscience Australia's inversion -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -georeferenced (PNG) conductivity sections (suitable for pseudo-3D display in a 2D GIS) -GoCAD™ S-Grid 3D objects (suitable for various 3D packages)

  • Google has partnered with hundreds of museums, cultural institutions and archives including Geoscience Australia to host treasures from our National Mineral and Fossil Collection online on the Google Arts & Culture website. Our building's public areas have been scanned and are online via a streetview virtual tour, there are a large number of collection items uploaded which have been used to create many unique and fascinating exhibits.

  • To deliver open data, government agencies must deal with legacy processes, both social and technical, that contain barriers to openness. These barriers limit the true usability of open data - how it can be used over time and in multiple contexts - and are critical to address as governments seek to expose open data. Linked Data (LD) has always been, at its core, about ensuring the FAIR Data Principles (Findable, Accessible, Interoperable, Reusable) by focusing on the identity and relationship of entities and exposing their context to consumers of data, even if these principles have only recently been named FAIR. A fundamental component of LD is that entities are identified by sustainable URI references called Persistent Identifiers (PIDs) which retain their utility over time despite system and organisation change. This poster will show how Geoscience Australia (GA) is applying the use of LD & PIDS in a real world, production IT, setting. Long running operational processes have been incrementally advanced to deliver data from relational databases as LD. Policies, practices and tools have developed and applied to support these LD delivery. The key components are: Data transformation tools: reliant on a robust internal data schema, the Corporate Data Model, these tools export views of it as XML or CSV publicly which is then converted to RDF in another step Overarching data model: a Semantic Web ontology that outlines the types of entities delivered publicly by GA and their macro relations. To date, public entities are Datasets, Web Services, vocabulary terms and geological Samples, Sites Surveys and Stratigraphic Units. New objects will include images with multiple formats and resolutions PID service: an application that manages a series of PID redirection rules PID governance policy: the defined process to support the agency with its multiple teams and their different data sources to have consistent application of entity identification rules and ensure uniqueness across multiple systems in the same registers pyLDAPI data service tools: a Web API tool that can present LD endpoints for entities according to given ontologies Cloud infrastructure as code (infracode): Provisioning of LD data holding RDF triple stores on the public cloud following agency best practice in delivering scalable solutions. The tools used are Apache’s Jena/Fuseki triplestore and API deployed on Amazon Web Services (AWS) with scalability through AWS Elastic Load Balancer and Elastic File Store components. Further work will explore suitability of the new triple store on AWS Neptune.

  • This synthesis of geophysical results for Australia is designed to provide an summary of the character of the Australian continent through the extensive information available at the continental scale. We present a broad range of geophysical attributes for the continent nation. We also endeavour to examine the relationships between different fields, and their relations to known resources. The work represents part of a continuing collaboration between the Research School of Earth Sciences at The Australian National University and Geoscience Australia with the objective of bringing together all aspects of the structure of Australia in convenient forms. The results build on the extensive data bases assembled at Geoscience Australia, particularly for potential fields, supplemented by the full range of seismological information mostly from the Australian National University. The book builds in part on the AUSREM project sponsored by the AuScope infrastructure organisation to develop a 3-D representation of seismological structure beneath the Australian region. The diverse and extensive geophysical data sets available for Australia in part reflect the poor outcrop of bedrock geology for this ancient weathered continent and the economic importance of this geology to the Australian economy through its resource potential. Geophysics provides an important way to examine the structures that lie beneath the cover. This book is intended to make a contribution to the UNCOVER initiative, which has identified improved information on the subsurface as a prerequisite for extending exploration in Australia from regions of exposure into those with sedimentary cover. To aid in cross comparison of results from different disciplines an effort has been made to present all continental scale geophysical information with a common format and map projection. It is hoped that this compilation of the many different facets of geophysical studies of the continent will make a contribution to the understanding of Australia's lithospheric architecture and its evolution. We have not attempted to impose interpretations on the datasets, rather we believe that the diverse strands of information may inspire new ways of looking at the continent.

  • The Upper Burdekin Basalt extents web service delivers province extents, detailed geology, spring locations and inferred regional groundwater contours for the formations of the Nulla and McBride Basalts. This work has been carried out as part of Geoscience Australia's Exploring for the Future program.