GIS
Type of resources
Keywords
Publication year
Scale
Topics
-
The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.
-
Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software
-
This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173). The wind hazard outputs are a series of rasters, one for each average recurrence interval considered, presenting peak wind hazard (peak from all directions) as measure in km/h. This file presents the future climate wind hazard. The file name indicates the hazard being presented, e.g. wspd_rp_1000_max.tif is the 1000 year Return Period (RP - equivalent to Average Reccurrence Interval (ARI)) and is the maximum wind speed from all directions. The local wind multipliers adjust the 3-second gust regional RP wind speed from 10 m above ground level to ground level with the consideration of topography and shielding effects. Eight cardinal directions are calculated for every raster cell and the maximum of these values is then derived and presented here.
-
This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173). The wind hazard outputs are a series of rasters, one for each average recurrence interval considered, presenting peak wind hazard (peak from all directions) as measure in km/h. This file identifies the extent of inundation from sea-level rise combined with Highest Astronomical Tide (HAT) which is 3.9 m AHD. The name of the file indicates the scneraio water height, e.g. p3p9_LGAClip indicates the inundation shown is for 3.9 m above AHD and that the file has been clipped by the Local Government Area (LGA) to remove the offshore inundation identified.
-
Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km.. gnaraloo_3m is an ArcGIS layer of the backscatter grid of the Gnaraloo survey area produced from the processed EM3002 backscatter data of the survey area using the CMST-GA MB Process
-
The Radiometric Map of Australia dataset comprises grids of potassium, uranium, and thorium element concentrations, and derivatives of these grids, that were derived by seamlessly merging over 550 airborne gamma-ray spectrometric surveys in the national radioelement database
-
The data set provides outlines for the maximum extent of the benthic Biomes of Australia's Exclusive Economic Zone for regions beyond the shelf break not including the offshore island territories and Australian Antarctic Territory. These data were compiled in 2004 as part of the draft national benthic marine bioregionalisation which is designed to provide improved knowledge of Australia's seabed. The Biomes represent bio-geographic regions that capture narrow spatial distributions and depth ranges in benthic faunal distributions, based on the assumption that the demersal fish distributions are a surrogate of marine faunal distributions. The narrow spatial distributions were revealed as strong patterns of bathymetric zoning for key indicator species on the upper to mid slope. Due to available data, biomes were only defined in water depths of <1,130 m. A total of three biomes were defined: upper slope, mid-upper slope, and mid slope. Each of the biomes is separated by a biotone. The Biomes data set includes the names of units in the attribute table as well as the area and perimeter of each unit.
-
Contains a medium scale raster representation of the topography of Australia. The data include the following themes: Hydrography - drainage networks including watercourses, lakes, wetlands, bores and offshore features; Infrastructure - constructed features to support road, rail and air transportation as well as built-up areas, localities and homesteads. Utilities, pipelines, fences and powerlines are also included; Relief - features depicting the terrain of the earth including 50 metre contours, spot heights, sand dunes, craters and cliffs; Vegetation - depicting forested areas, orchards, mangroves, pine plantations and rainforests; and Reserved Areas - areas reserved for special purposes including nature conservation reserves, aboriginal reserves, prohibited areas and water supply reserves.
-
Sniffer Files The 'Sniffer' or Direct Hydrocarbon Detection (DHD) technique used to detect hydrocarbon seepage offshore involves towing a submerged tow-fish close to the seafloor and continuously pumping seawater into a geochemical laboratory on board where the hydrocarbons are extracted and measured by gas chromatography. The Direct Hydrocarbon Detection (DHD) method continuously analyses C1-C8 hydrocarbons within seawater. The method used on the RV Rig Seismic is as follows. Seawater is continuously delivered into the geochemical laboratory onboard the ship via a submersible fish (which is towed approximately 10 m above the seafloor). The seawater is degassed in a vacuum chamber and the resulting headspace gas is injected into three gas chromatographs, which sequentially sample the flowing gas stream and measure a variety of light hydrocarbons. Total hydrocarbons (THC) are measured every thirty seconds, light hydrocarbons (C1-C4) are measured every two minutes and C5 to C8 are measured every 8 minutes. Fluorometer and Aquatrack Fil In October 1998, the Australian Geological Survey Organisation (AGSO) carried out field trials of three commercially available towed fluorometers; Aquatracka (Chelsea Instruments), SAFIRE (WetLabs), FLF (WetLabs). These instruments were pre-selected on manufacturer specifications as potentially the most suitable, compared to other fluorometers currently on the market, for the detection of polycyclic aromatic hydrocarbons (PAH) present in crude oils seeping into the marine environment. The fluorometers were set with an excitation wavelength in the range 239 nm to 260 nm and fluorescence was monitored over the range 340 nm to 360 nm. SAFIRE is a multi-wavelength instrument, which enabled simultaneous use of several excitation and emission wavelengths. All three fluorometers were mounted on deck and seawater was pumped through them. The Aquatracka instrument analysed deep water pumped to the surface by the "Sniffer" submersible system.
-
This use of this data should be carried out with the knowledge of the contained metadata and with reference to the associated report provided by Geoscience Australia with this data (Reforming Planning Processes Trial: Rockhampton 2050). A copy of this report is available from the the Geoscience Australia website (http://www.ga.gov.au/sales) or the Geoscience Australia sales office (sales@ga.gov.au, 1800 800 173). This file identifes the storm tide inundation extent for a specific Average Recurrence Interval (ARI) event. Naming convention: SLR = Sea Level Rise s1a4 = s1 = Stage 1(extra-tropical storm tide), s2 = Stage 2 (tropical cyclone storm tide) (relating to Haigh et al. 2012 storm tide study), a4 = area 4 and a5 = area 5 2p93 = Inundation height, in this case 2.93 m Dice = this data was processed with the ESRI Dice tool.