From 1 - 10 / 4081
  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • Geoscience Australia carried out marine surveys in southeast Tasmania in 2008 and 2009 (GA0315) to map seabed bathymetry and characterise benthic environments through observation of habitats using underwater towed video. Data was acquired using the Tasmania Aquaculture and Fisheries Institute (TAFI) Research Vessel Challenger. Bathymetric mapping was undertaken in seven survey areas, including: Freycinet Pensinula (83 sq km, east coast and shelf); Tasman Peninsula (117 sq km, east coast and shelf); Port Arthur and adjacent open coast (17 sq km); The Friars (41 sq km, south of Bruny Island); lower Huon River estuary (39 sq km); D Entrecastreaux Channel (7 sq km, at Tinderbox north of Bruny Island), and; Maria Island (3 sq km, western side). Video characterisations of the seabed concentrated on areas of bedrock reef and adjacent seabed in all mapped areas, except for D Entrecastreaux Channel and Maria Island. fortescue_160 is an ArcINFO grid of the Tasman Peninsula survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software.

  • CIMFR_area_under_management.shp: These data show the Christmas Island Minesite to Forest Rehabilitation Programme (CIMFR) areas - as used by staff at the Christmas Island National Park. CIMFR_area_buffer.shp: These data show a 50m buffer zone within the Christmas Island Minesite to Forest Rehabilitation Programme (CIMFR) areas - as used by staff at the Christmas Island National Park.

  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km.. gnaraloo_3m is an ArcGIS layer of the backscatter grid of the Gnaraloo survey area produced from the processed EM3002 backscatter data of the survey area using the CMST-GA MB Process

  • The Radiometric Map of Australia dataset comprises grids of potassium, uranium, and thorium element concentrations, and derivatives of these grids, that were derived by seamlessly merging over 550 airborne gamma-ray spectrometric surveys in the national radioelement database

  • Sniffer Files The 'Sniffer' or Direct Hydrocarbon Detection (DHD) technique used to detect hydrocarbon seepage offshore involves towing a submerged tow-fish close to the seafloor and continuously pumping seawater into a geochemical laboratory on board where the hydrocarbons are extracted and measured by gas chromatography. The Direct Hydrocarbon Detection (DHD) method continuously analyses C1-C8 hydrocarbons within seawater. The method used on the RV Rig Seismic is as follows. Seawater is continuously delivered into the geochemical laboratory onboard the ship via a submersible fish (which is towed approximately 10 m above the seafloor). The seawater is degassed in a vacuum chamber and the resulting headspace gas is injected into three gas chromatographs, which sequentially sample the flowing gas stream and measure a variety of light hydrocarbons. Total hydrocarbons (THC) are measured every thirty seconds, light hydrocarbons (C1-C4) are measured every two minutes and C5 to C8 are measured every 8 minutes. Fluorometer and Aquatrack Fil In October 1998, the Australian Geological Survey Organisation (AGSO) carried out field trials of three commercially available towed fluorometers; Aquatracka (Chelsea Instruments), SAFIRE (WetLabs), FLF (WetLabs). These instruments were pre-selected on manufacturer specifications as potentially the most suitable, compared to other fluorometers currently on the market, for the detection of polycyclic aromatic hydrocarbons (PAH) present in crude oils seeping into the marine environment. The fluorometers were set with an excitation wavelength in the range 239 nm to 260 nm and fluorescence was monitored over the range 340 nm to 360 nm. SAFIRE is a multi-wavelength instrument, which enabled simultaneous use of several excitation and emission wavelengths. All three fluorometers were mounted on deck and seawater was pumped through them. The Aquatracka instrument analysed deep water pumped to the surface by the "Sniffer" submersible system.

  • The dataset represents the direct distance from any location to the nearest part of the Australian coast line. The distance unit is decimal degree.

  • As part of the standard town capture and requirement for high-res imagery to assist with cadastral upgrade in the Wellington Shire, the opportunity was taken to survey Geurie

  • My First Record

  • "Spot Heights. (dataset derived from the DIgital Chart of the World (DCW) HY_POINT and HS_POINT coverages). For more information on the Digital Chart of the World data please browse the DCW Internet Site <a href=""http://www.maproom.psu.edu/dcw/"">http://www.maproom.psu.edu/dcw/</a>. Data can be downloaded from here in <b>vpf format</b>. <p>NOTE : For more accurate and detailed data covering <b>continental Australia only</b> please obtain the <b><a href=""http://www.auslig.gov.au/download/"">Global Map Data 1M</a></b> <p><b>Generic information on DCW datasets :-</b> <br>The primary source for DCW is the US Defense Mapping Agency (DMA) Operational Navigation Chart (ONC) series produced by the United States, Australia, Canada, and the United Kingdom. The ONC's have a scale of 1:1,000,000, where 1 inch equals approximately 16 miles.The charts were designed to meet the needs of pilots and air crews in medium and low altitude en route navigation and to support military operational planning, intelligence briefings, and other needs. Therefore, the selection of ground features is based on the requirement for rapid visual recognition of significant details seen from a low perspective angle. The DCW database was originally published in 1992. Data currency varies from place to place depending on the currency of the ONC charts. Chart currency ranges from the mid 1960's to the early 1990's. Compilation dates for every ONC chart are included in the database."