From 1 - 10 / 192
  • Total contribution of six recently discovered submerged coral reefs in northern Australia to Holocene neritic CaCO3, CO2, and C is assessed to address a gap in global budgets. CaCO3 production for the reef framework and inter-reefal deposits is 0.26-0.28 Mt which yields 2.36-2.72 x105 mol yr-1 over the mid- to late-Holocene (<10.5 kyr BP); the period in which the reefs have been active. Holocene CO2 and C production is 0.14-0.16 Mt and 0.06-0.07 Mt, yielding 3.23-3.71 and 5.32-6.12 x105 mol yr-1, respectively. Coral and coralline algae are the dominant sources of Holocene CaCO3 although foraminifers and molluscs are the dominant constituents of inter-reefal deposits. The total amount of Holocene neritic CaCO3 produced by the six submerged coral reefs is several orders of magnitude smaller than that calculated using accepted CaCO3 production values because of very low production, a 'give-up' growth history, and presumed significant dissolution and exports. Total global contribution of submerged reefs to Holocene neritic CaCO3 is estimated to be 0.26-0.62 Gt or 2.55-6.17 x108 mol yr-1, which yields 0.15-0.37 Gt CO2 (3.48-8.42 x108 mol yr-1) and 0.07-0.17 Gt C (5.74-13.99 x108 mol yr-1). Contributions from submerged coral reefs in Australia are estimated to be 0.05 Gt CaCO3 (0.48 x108 mol yr-1), 0.03 Gt CO2 (0.65 x108 mol yr-1), and 0.01 Gt C (1.08 x108 mol yr-1) for an emergent reef area of 47.9 x103 km2. The dilemma remains that the global area and CaCO3 mass of submerged coral reefs are currently unknown. It is inevitable that many more submerged coral reefs will be found. Our findings imply that submerged coral reefs are a small but fundamental source of Holocene neritic CaCO3, CO2, and C that is poorly-quantified for global budgets.

  • The legacy of multiple marine transgressions is preserved in a complex morphology of ridges, mounds and reefs on the Carnarvon continental shelf, Western Australia. High-resolution multibeam sonar mapping, underwater photography and sampling across a 280 km2 area seaward of the Ningaloo Coast World Heritage Area shows that these raised features provide hardground habitat for modern coral and sponge communities. Prominent among these features is a 20 m high and 15 km long shore-parallel ridge at 60 m water depth. This ridge preserves the largely unaltered form of a fringing reef and is interpreted as the predecessor to modern Ningaloo Reef. Landward of the drowned reef, the inner shelf is covered by hundreds of mounds (bommies) up to 5 m high and linear ridges up to 1.5 km long and 16 m high. The ridges are uniformly oriented to the north-northeast and several converge at their landward limit. On the basis of their shape and alignment, these ridges are interpreted as relict long-walled parabolic dunes. Their preservation is attributed to cementation of calcareous sands to form aeolianite, prior to the post-glacial marine transgression. Some dune ridges abut areas of reef that rise to sea level and are highly irregular in outline but maintain a broad shore-parallel trend. These are tentatively interpreted as Last Interglacial in age. The mid-shelf and outer shelf are mostly sediment covered with relatively low densities of epibenthic biota and have patches of low-profile ridges that may also be relict reef shorelines. An evolutionary model for the Carnarvon shelf is proposed that relates the formation of drowned fringing reefs and aeolian dunes to Late Quaternary eustatic sea level.

  • An examination of regionally extensive hill-shaded SRTM 90m resolution and DLI 10 m resolution digital elevation data and discussions with government and industry geologists familiar with the local geology has resulted in the identification of thirty eight previously unrecognised linear topographic scarps in the southwest and central west of Western Australia. I contend that most of these relate to Quaternary surface-rupturing earthquakes. If validated, this more than doubles the number of Quaternary fault scarps known from this area, bringing the total to sixty. The newly recognised scarps average between 25 km and 50 km in length and from ~1.5 m to 20 m in height. The geometric, recurrence and spatial attributes of these features makes it possible to propose a model describing the causative seismicity. The model contends that uniform contractional strain in the ductile lithosphere manifests as localised, transient and recurrent brittle deformation in zones of pre-existing crustal weakness in the upper lithosphere. The data presented allow for ready calculation of the maximum probable magnitude earthquake for the southwest of Western Australia, and identify 'earthquake prone' regions of interest to seismic hazard assessors.

  • This report contains the preliminary results of Geoscience Australia survey 266 to central Torres Strait. The survey was undertaken to investigate the seabed geomorphology and sedimentary processes in the vicinity of Turnagain Island and to infer the possible effects (if any) on the distribution, abundance and survival of seagrasses. The Turnagain Island region was chosen because it is a known site of recent widespread seagrass dieback. The present survey is the first of two by Geoscience Australia to be carried out in 2004 and is part of a larger field-based program managed by the Reef CRC aimed at identifying and quantifying the principal physical and biological processes operating in Torres Strait. The impetus for the program is the threat of widespread seagrass dieback and its effects on local dugong and turtle populations and the implications for indigenous islander communities.

  • This study examined the geomorphology of the sea bed, the spatial distribution of the various sediment types and the geomorphic evolution of Cockburn Sound.

  • This record is a review and synthesis of geological research undertaken along the south western margin of Australia. The record has been written in support of regional marine planning and provides fundamental baseline scientific information for the South Western Marine Planning Area.

  • Faults of the Lapstone Structural Complex (LSC) underlie 100 km, and perhaps as much as 160 km, of the eastern range front of the Blue Mountains, west of Sydney. More than a dozen major faults and monoclinal flexures have been mapped along its extent. The Lapstone Monocline is the most prominent of the flexures, and accounts for more than three quarters of the deformation across the complex at its northern end. Opinion varies as to whether recent tectonism, or erosional exhumation of a pre-existing structure, better accounts for the deeply dissected Blue Mountains plateau that we see today. Geomorphic features such as the abandoned meanders at Thirlmere Lakes illustrate the antiquity of the landscape and favour an erosional exhumation model. According to this model, over-steepened reaches developed in easterly flowing streams at the Lapstone Monocline when down-cutting through shale reached more resistant sandstone on the western side of the LSC. These over-steepened reaches drove headward (westerly) knick point retreat, ultimately dissecting the plateau. However, a series of swamps and lakes occurring where small easterly flowing streams cross the westernmost faults of the LSC, coupled with over-steepened reaches 'pinned' to the fault zones in nearby larger streams, imply that tectonism plays a continuing role in the development of this landscape. We present preliminary results from an ongoing investigation of Mountain Lagoon, a small fault-bound basin bordering the Kurrajong Fault in the northern part of the LSC.

  • Abstract: Compressional deformation is a common phase in the post-rift evolution of passive margins and rift systems. The central-west Western Australian margin, between Geraldton and Karratha, provides an excellent example of a strain gradient between inverting passive margin crust and adjacent continental crust. The distribution of contemporary seismicity in the region indicates a concentration of strain release within the Phanerozoic basins which diminishes eastward into the cratons. While few data exist to quantify uplift or slip rates, this gradient can be qualitatively demonstrated by tectonic landforms which indicate that the last century or so of seismicity is representative of patterns of Neogene and younger deformation. Pleistocene marine terraces on the western side of Cape Range indicate uplift rates of several tens of metres per million years, with similar deformation resulting in sub-aerial emergence of Miocene strata on Barrow Island and elsewhere. Northeast of Kalbarri near the eastern margin of the southern Carnarvon Basin, marine strandlines are displaced by a few tens of metres. A possible Pliocene age would indicate that uplift rates are an order of magnitude lower than further west. Relief production rates in the western Yilgarn Craton are lower still - numerous scarps (e.g. Mount Narryer) appear to relate individually to <10 m of displacement across Neogene strata. Quantitative analysis of time-averaged deformation preserved in the aforementioned landforms, including study of scarp length as a proxy for earthquake magnitude, has the potential to provide useful constraints on seismic hazard assessments in a region containing major population centres and nationally significant infrastructure.