From 1 - 10 / 114
  • The service contains the Australian Coastal Geomorphology Scale Guide, used to support a national coastal risk assessment. It includes the extents of various reclassified costal mapping products. It is cached service with a Web Mercator Projection.

  • The Murray Canyons are a group of deeply-incised submarine canyons on a steep 400-km section of the continental slope off Kangaroo Island, South Australia. Some of the canyons are amongst the largest on Earth. The canyons, some 80 km long, descend from the shelf edge to abyssal plain 5200 m deep. Sprigg Canyon, the deepest and one of the largest, has walls 2 km high. The thalwegs of the larger canyons are concave in profile, steepest on the upper continental slope (15?-30?), with about 4?gradient on the mid slope, then level out on the lower slope to merge with the 1? continental rise. Between canyons, the continental slope is slightly convex to linear with a gradient of about 5?-6?. Canyon walls commonly slope at 15?-22?. The passive continental margin narrows to 65-km at the Murray Canyons and links the Bight and Otway Basins. WNW-trending Jurassic-Cretaceous rift structures control the irregular shape of the central canyons. At the western end, large box canyons 1 km deep are incised into thick sediments of the Ceduna Sub-basin. Formed by headscarp erosion, some of these canyons have coalesced by canyon capture. The upper parts of most canyons are cut into Cretaceous sediments and in some places are floored by basement rocks. Large holes, spaced about 5 km apart and up to several hundred metres deep, along the outlet channels of the larger and steeper canyons were probably gouged by turbidity currents resulting from major slope failures at the shelf edge. Quaternary turbidites were deposited on the abyssal plain more than 100 km from the foot of slope. Canyon down-cutting was episodic since the latest Cretaceous, with peak activity since the Oligocene due to strong glacioeustatic fluctations and cycles, with canyon development occurring during lowstands and early transgressions when sediment input at the shelf edge was usually highest. The timing of canyon development is linked to major unconformities within adjacent basins, with down-cutting events recorded or inferred during early Paleocene, Middle Eocene, Early Oligocene, Oligocene/Miocene transition (~24 Ma), mid Miocene (~14 Ma) and latest Miocene-Pleistocene. The early phases involved only siliciclastic sediments, while post-early Eocene canyon cutting was dominated by biogenic carbonates generated on the shelf and upper continental slope. The Murray River dumped its sediment load directly into Sprigg Canyon during extreme lowstands of the Late Pleistocene when the Lacepede Shelf was dry land.

  • This report presents the geomorphology and sedimentology of the East Marine Region. The three main outputs of the report include: 1) a review of previous geological research undertaken in the East Marine Region (EMR); 2) the results of a quantitative study of seabed sediment texture and composition for these regions; and 3) a synthesis of this information characterizing regional trends in sedimentology, geomorphology and bathymetry. The study is a collaboration between Geoscience Australia and the Department of the Environment, Water, Heritage and the Arts (DEWHA) and is a continuation of similar work conducted for the North West Marine Region (Potter et al., in press; Baker et al., 2008) and the South West Marine Region (Richardson et al., 2005). By combining results of previous qualitative work and quantitative information generated from existing and new data, this report provides an improved understanding of sedimentology for the EMR. Information contained within this report will contribute to the Department of the Environment, Water, Heritage and the Arts national work program and will also assist in the marine bioregional planning for the East Marine Region. Previous sediment studies in the EMR have predominantly produced qualitative results at local scales. Geomorphic, sedimentary and biological information has previously been utilised to develop a National Bioregionalisation of Australia's Exclusive Economic Zone (EEZ) (Department of the Environment and Heritage (National Oceans Office), 2005; now the Department of the Environment, Water, Heritage and the Arts) and substantive geomorphic features of the eastern continental margins have already been identified and mapped (Heap and Harris, in press). This report adds significantly to these previous studies by incorporating the information in a sedimentological synthesis that includes a discussion of the implications for marine conservation in the EMR. The physical characteristics of the seabed in the EMR, as described by the sediment texture and composition data, can assist in determining the diversity of benthic marine habitats in the EMR. These data represent enduring features which are elements of the physical environment that do not change considerably and they are known to influence the diversity of biological systems. This is important for marine conservation by contributing to the better definition and characterisation of benthic habitats. Seabed texture and composition are easily measurable parameters that when combined with other physical features can be used to create "seascapes" that serve as broad surrogates for benthic habitats and biota (Whiteway et al., 2007). Seascapes have the potential to be used in informing the marine bioregional planning process.

  • Seismic reflection data show the existence of two major sedimentary basins along the continental margin of Wilkes Land and Terre Adélie, East Antarctica, that contain more than 5 s TWT (> 9 km) of sediments. Four seismic megasequences are identified (MS4 to MS1) that are bounded by: basement, unconformities of interpreted Turonian, Maastrichtian and early Middle Eocene age, and the seafloor. The 4-5 km thick rift and pre-rift sediments are concentrated in a margin-parallel basin (Sabrina Basin). On the basis of seismic correlation with the Australian margin, this basin is interpreted to be of Late Jurassic to mid-Cretaceous age. The post-rift sediments are generally thick along the margin and in the adjacent deep-ocean basin, but are particularly thick in a major depocentre off west Wilkes Land, named here the Budd Coast Basin (BCB). The BCB contains a maximum observed thickness of 5 s TWT (9 km) of post-rift sediments and its location suggests that the sediments were largely derived from a sub-glacial basin currently occupied by the Totten Glacier.

  • This record is a review and synthesis of geological research undertaken along the northern margin of Australia. The record has been written in support of regional marine planning and provides fundamental baseline scientific information for the Northern Planning Area.

  • This study examined the geomorphology of the sea bed, the spatial distribution of the various sediment types and the geomorphic evolution of Cockburn Sound.

  • Surveying of nearshore areas in the Vestfold Hills using high resolution multibeam swath bathymetry provides both a detailed digital bathymetric model and information on sediment acoustic backscatter. Combined with underwater video transects and sediment sampling, these data can be used to identify and map geomorphic units. Six geomorphic units identified in the survey region include: Rocky outcrops, sediment-floored basins, pediments, steep-sided valleys, scarps and sheltered embayments. In addition to geomorphic units, the data reveal sedimentary structures that provide insights into sediment transport and erosion in the area. Ice keel pits and scours are common while seafloor channels, scour depressions and sand ribbons indicate transport and deposition by wind-driven currents and oceanographic circulation. Gullies and sediment lobes on steep slopes indicate mass movement of sediment. The sheltered embayments preserve a mantle of boulder sand probably deposited by cold-based glaciers. Automated techniques utilizing the bathymetric grid and backscatter to map landforms are useful in defining reproducible boundaries between geomorphic units but cannot easily be adapted to accurately classify the variations in sea floor texture and structure imaged by these data.

  • The central aim of the Comparative Geomorphology of Estuaries Project of the Coastal CRC was to improve our understanding of Australia's near-pristine estuaries. As the title implies, the project had a geomorphic focus in that a major output was mapping of geomorphic habitats of a representative selection of nearpristine estuaries from around Australia.

  • An important aim of the comparative geomorphology of estuaries project was to increase understanding of the environmental characteristics of near-pristine estuaries and provide a reference dataset for quantifying changes in habitat patterns in modified systems. It was anticipated that this aim would be fulfilled by identifying key geomorphic characteristics of the near-pristine systems that may be used to benchmark the current condition of, and quantify change within, 'modified' waterways. Here we provide examples of some very promising results obtained from our preliminary analyses of the geomorphic habitat area information contained within the GIS maps available on OzEstuaries.

  • For the purpose of obtaining a general understanding of the geology of North Stradbroke Island, field work was carried out on the island from January 8th to February 17th, 1948. Altimeter traverses were made from Dunwich, Amity, Point Lookout and Blue Lake, and from the connecting roads. The southern portion was covered from landing points on the west coast near Russel Island. The results of observations were plotted on to Military Map Queensland Zone 8, No. 182 (Brisbane Valley). Altimeter readings were corrected from the readings of a weekly barograph stationed at Dunwich, on the western side of the island. This report is comprised in two parts. In Part I, the physiography and the geology of the island are described. In Part II, an account is given of the history of the development of the island.