From 1 - 10 / 237
  • This dataset contains species identifications of echinoderms collected during survey TAN0713 (R.V. Tangaroa, 7 Oct - 22 Nov 2007). Animals were collected from the Faust and Capel basins and Gifford Guyot with a boxcore, rock dredge, or epibenthic sled. Specimens were lodged at Museum of Victoria in June 2008. Species-level identifications were undertaken by Tim O'Hara at the Museum of Victoria and were delivered to Geoscience Australia on 1 July 2008. See GA Record 2009/22 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.

  • A quantitative synthesis of the sedimentology and geomorphology of the South West Planning Region of Australia. Sediment data used was sourced from previous and new quantitative carbonate and grainsize data generated from surficial seabed sediment samples. All sample information and assays are available in the MARS database. The report and new assays were generated as part of an MOU with the Department of Environment and Heritage (National Oceans Office) and the results are reported in a format appropriate for use in regional marine planning.

  • Understanding and predicting the bio-physical relationships between seabed habitats, biological assemblages, and marine biodiversity is critical to managing marine systems. Species distributions and assemblage structure of infauna were examined on the oceanic shelf surrounding Lord Howe Island (LHI) relative to seabed complexity within and adjacent to a newly discovered relict coral reef. High resolution multibeam sonar was used to map the shelf, and identified an extensive relict reef in the middle of the shelf, which separated an inner drowned lagoon from the outer shelf. Shelf sediments and infauna were sampled using a Smith McIntyre grab. The three geomorphic zones (drowned lagoon, relict reef and outer shelf) were strong predictors or surrogates of the physical structure and sediment composition of the LHI shelf and its infaunal assemblage. Infaunal assemblages were highly diverse with many new and endemic species recorded. Each zone supported characteristic assemblages and feeding guilds, with higher abundance and diversity offshore.

  • In May 2013, Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) undertook a collaborative seabed mapping survey (GA0340/ SOL5754) on the Leveque Shelf, a distinct geological province within the Browse Basin, offshore Western Australia. The purpose of the survey was to acquire geophysical and biophysical data on seabed environments over a previously identified potential CO2 injection site to better understand the overlying seabed habitats and to assess potential for fluid migration to the seabed. Mapping and sampling was undertaken across six areas using multibeam and single beam echosounders, sub-bottom profilers, sidescan sonar, underwater towed-video, gas sensors, water column profiler, grab samplers, and vibrocorer. Over 1070 km2 of seabed and water column was mapped using the multibeam and single beam echosounder, in water depths ranging between 40 and 120 m. The sub-surface was investigated using the multichannel and the parametric sub-bottom profilers along lines totalling 730 km and 1547 km in length respectively. Specific seabed features were investigated over 44 line km using the sidescan sonar and physically and sampled at 58 stations. Integration of this newly acquired data with existing seismic data will provide new insights into the geology of the Leveque Shelf. This work will contribute to the Australian Government's National CO2 Infrastructure Plan (NCIP) by providing key seabed environmental and geological data to better inform the assessment of the CO2 storage potential in this area of the Browse Basin. This dataset contains identifications of Polychaetes collected from 64 Smith-McIntyre grabs deployed during GA0340/SOL5754.

  • Disturbances characterise many natural environments - on land, a forest fire that removes a patch of old-growth trees is an example. The trees that first colonise the vacant patch may be a different species to the surrounding old-growth forest and hence, taken together, the disturbed and undisturbed forest has a higher biodiversity than the original undisturbed forest. This simple example demonstrates the intermediate disturbance hypothesis (IDH) that has applications in many natural environments. The application of IDH is significant for managers tasked with managing and conserving the biodiversity that exists in a given area. In this report we have used models of seabed sediment mobilisation to examine IDH for Australia's continental shelf environment. Although other disturbance processes may occur (eg. biological, temperature, salinity, anthropogenic, etc.) our study addresses only the physical disturbance of the seabed by waves and currents. Our study has shown that it is feasible to model the frequency and magnitude of seabed disturbance in relation to the dominant energy source (wave-dominated shelf, tide-dominated shelf or tropical cyclone dominated shelf). We focussed our attention on high-energy, patch-clearing events defined as exceeding the Shields parameter value of 0.25. Based on what is known about rates of ecological succession for different substrate types (gravel, sand, mud) we derive maps predicting the spatial distribution of a dimensionless ecological disturbance index (ED). Only a small portion of the shelf (perhaps ~10%) is characterised by a disturbance regime as defined here. Within these areas, the recurrence interval of disturbance events is comparable to the rate of ecological succession and meets our defined criteria for a disturbance regime. To our knowledge, this is the first time such an analysis has been attempted for any continental shelf on the earth.

  • The seafloor morphology mapping approach used to derive this dataset follows Geoscience Australia’s draft National Seafloor GeoMorphology (NSGM) mapping scheme (Nanson and Nichol, 2018). The NSGM scheme is an extension of the Dove et al. (2016) approach, which characterises the seafloor in two sequential parts: Part 1 maps the seafloor Morphology (shape) using bathymetry data, and Part 2 uses additional data to interpret seafloor Geomorphology for those mapped morphological shapes. Part 1 of the NSGM scheme was applied to the project dataset, and consists of three hierarchical levels: Province, Surface and Feature. This dataset contains Surface shapefiles that comprise three categories: Plane (<2 degrees), Slope (2-10 degrees) and Escarpment (>10 degrees).This dataset is published with the permission of the CEO, Geoscience Australia

  • The Australian exclusive economic zone (EEZ) contains1.6 million km2 of submarine plateaus, equal to about 13.8% of the world's known inventory of these features. This disproportionate occurrence of plateaus presents Australia with an increased global responsibility to understand and protect the benthic habitats and associated ecosystems. This special volume presents the results of two major marine surveys carried out on the Lord Howe Rise plateau during 2003 and 2007, during which benthic biological and geological samples, underwater photographs, video and multibean sonar bathymetry data were collected. The benthic habitats present on Lord Howe Rise include hard/rocky substrates covering a small area of volcanic peaks (around 31 km2) and parts of other larger seamounts (eg. the Lord Howe Island seamount) which support rich and abundant epifaunal assemblages dominated by suspension feeding invertebrates. These habitats appear to qualify as ecologically and biologically significant areas under the United Nations Convention on Biological Diversity (CBD) scientific selection criterion 1 (uniqueness or rarity), 4 (vulnerability, fragility, sensitivity or slow recovery) and 7 (naturalness). The collection of papers included in this special volume represents a major advance in knowledge about benthic habitats of the Lord Howe Rise, but also about the ecology of plateaus in general.

  • Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially highly suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA334) was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Vlaming Sub-basin that may extend up to the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This research addresses key questions on the potential for containment of CO2 in the Early Cretaceous Gage Sandstone (the basin's proposed CO2 storage unit) and the regional integrity of the South Perth Shale (the seal unit that overlies the Gage Sandstone). This dataset comprises a suite of major and minor inorganic elements from seabed (0-2 cm) sediments.

  • This is a compilation of Seabed and Habitat Mapping Publications 2008 - 2010: GA Record 2008_20.pdf Vlaming Sub-Basin and Mentelle Basin: Environmental Summary GA Record 2008_23.pdf A Review of Spatial Interpolation Methods for Environmental Scientists GA Record 2009_02.pdf Carnarvon Shelf Survey Post-Survey Report GA Record 2009_09.pdf Ceduna Sub-basin: Environmental Summary GA Record 2009_10.pdf Mapping and characterising soft sediment habitats, and evaluating physical variables as surrogates of biodiversity in Jervis Bay, NSW GA Record 2009_12.pdf Temporal and fine-scale variation in the biogeochemistry of Jervis Bay GA Record 2009_13.pdf Review of Ten Key Ecological Features (KEFs) in the Northwest Marine Region GA Record 2009_22.pdf Seabed Environments and Subsurface Geology of the Capel and Faust basins and Gifford Guyot,Eastern Australia GA Record 2009_26.pdf Deep Sea Lebensspuren: Biological Features on the Seafloor of the Eastern and Western Australian Margin GA Record 2009_38.pdf Frontier basins of the west Australian continental margin: post-survey report of marine reconnaissance and geological sampling survey GA2476 GA Record 2009_42.pdf A Review of Surrogates for Marine Benthic Biodiversity GA Record 2009_43.pdf Southeast Tasmania Temperate Reef Survey Post-Survey Report GA Record 2010_09.pdf Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia

  • Three areas in the Torres Strait-Gulf of Papua region were selected for detailed study of sediments and benthic fossil biota. These areas form a transect across the shelf from the Fly River Delta to the shelf edge, near the northern extremity of the Great Barrier Reef. The Torres Strait-Gulf of Papua shelf is a shallow, low-gradient platform, where the shelf edge occurs between 120 and 140 m depth. In the study area, where the sediments range from muddy to gravelly carbonate sands, the sediment deposition rates are low and the relict content of sediment is often high. The three areas show distinct differences in benthic foraminiferal assemblages as indicated by relative abundances at the order level, as well as distribution patterns of individual species; these differences are also reflected in the total microbiotic communities. Given the high relict content in the surface material across these sites, a foraminiferal preservation scale was developed to assess the extent of reworking. Taphonomic features indicate that abrasion is the main factor affecting preservation. Despite poor preservation of the foraminiferal tests, the benthic foraminiferal species have a strong correlation to water depth, indicating that transportation pathways are short. Application of multivariate statistics to analyze the relationship between environmental attributes and the distributions of the microbiota and foraminiferal species indicates the additional importance of factors including percent carbonate mud, percent gravel, organic carbon flux, temperature, salinity and mean grain size. The benthic foraminifera produce a much stronger correlation to the environmental variables than the microbiota, indicating that these organisms can provide a detailed assessment of habitat types.