seabed
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Topics
-
This dataset contains species identifications of sponges collected during survey SOL4934 (R.V. Solander, 27 August - 24 September, 2009). Animals were collected from the Joseph Bonaparte Gulf with a benthic sled. Specimens were lodged at Northern Territory Museum on the 26 September 2009. Species-level identifications were undertaken by Belinda Glasby at the Northern Territory Museum and were delivered to Geoscience Australia on the 23 February 2011. See GA Record 2010/09 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.
-
This dataset contains species identifications of echinoderms collected during survey GA2476 (R.V. Solander, 12 August - 15 September 2008). Animals were collected from the Western Australian Margin with a BODO sediment grab or rock dredge. Specimens were lodged at Museum of Victoria on the 10 March 2009. Species-level identifications were undertaken by Tim O'Hara at the Museum of Victoria and were delivered to Geoscience Australia on the 24 April 2009. See GA Record 2009/02 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.
-
The dataset provides the spatially continuous data of the seabed gravel content (sediment fraction >2000 µm) expressed as a weight percentage ranging from 0 to 100%, presented in 0.01 decimal degree resolution raster format. The dataset covers the Australian continental EEZ, including seabed surrounding Tasmania. It does not include areas surrounding Macquarie Island, and the Australian Territories of Norfolk Island, Christmas Island, and Cocos (Keeling) Islands or Australia's marine jurisdiction off of the Territory of Heard and McDonald Islands and the Australian Antarctic Territory. This dataset supersedes previous predictions of sediment gravel content for the Australian Margin with demonstrated improvements in accuracy. Accuracy of predictions varies based on density of underlying data and level of seabed complexity. Artefacts occur in this dataset as a result of insufficient samples in relevant regions. This dataset is intended for use at national and regional scales. The dataset may not be appropriate for use at local scales in areas where sample density is insufficient to detect local variation in sediment properties. To obtain the most accurate interpretation of sediment distribution in these areas, it is recommended that additional samples be collected and interpolations updated.
-
This dataset provides the spatially continuous data of the seabed sand content (sediment fraction 63-2000 mm) expressed as a weight percentage ranging from 0 to 100%, presented in 0.01 decimal degree resolution raster format. The dataset covers the Australian continental EEZ, including seabed surrounding Tasmania. It does not include areas surrounding Macquarie Island, and the Australian Territories of Norfolk Island, Christmas Island, and Cocos (Keeling) Islands or Australia's marine jurisdiction off of the Territory of Heard and McDonald Islands and the Australian Antarctic Territory. This dataset supersedes previous predictions of sediment sand content for the Australian Margin with demonstrated improvements in accuracy. Accuracy of predictions varies based on density of underlying data and level of seabed complexity. Artefacts occur in this dataset as a result of insufficient samples in relevant regions. This dataset is intended for use at national and regional scales. The dataset may not be appropriate for use at local scales in areas where sample density is insufficient to detect local variation in sediment properties. To obtain the most accurate interpretation of sediment distribution in these areas, it is recommended that additional samples be collected and interpolations updated.
-
The northern Australian continental shelf is the focus for an expanding offshore energy industry and is also recognised for its high-value marine biodiversity in regional marine management plans. To reduce uncertainty and risk in the future development and management of the region, Geoscience Australia has an ongoing program to provide integrated marine environmental information to support both activities. The program includes collation of existing marine data and acquisition of new high resolution datasets. In 2009 and 2010, marine surveys in eastern Joseph Bonaparte Gulf were completed to characterise the seabed in representative areas, assess potential for geohazards and identify unique or sensitive benthic habitats. Data acquired included multibeam sonar bathymetry (~1900 km2), shallow (<120 m) sub-bottom profiles, sediment grabs and shallow (2-5 m) cores, towed video and epibenthic sleds. Geomorphic features mapped range from expansive soft-sediment plains, to isolated carbonate banks that rise tens of metres and incised valleys up to 200 m deep. Each feature is characterised by a distinctive biota, ranging from coral and sponge gardens on banks to diverse infaunal communities across plains. Geohazards include potential for localised slumping in valleys and escape of subsurface fluid/gas from plains and valley floors. To facilitate uptake of this information, results are integrated as generalised graphical models representing key spatial patterns of shelf ecosystems. This work has led to further work in targeted areas of the Gulf as part of a new four-year Australian Government program to inform geological and environmental assessments of offshore basins for CO2 storage.
-
The legacy of multiple marine transgressions is preserved in a complex morphology of ridges, mounds and reefs on the Carnarvon continental shelf, Western Australia. High-resolution multibeam sonar mapping, underwater photography and sampling across a 280 km2 area seaward of the Ningaloo Coast World Heritage Area shows that these raised features provide hardground habitat for modern coral and sponge communities. Prominent among these features is a 20 m high and 15 km long shore-parallel ridge at 60 m water depth. This ridge preserves the largely unaltered form of a fringing reef and is interpreted as the predecessor to modern Ningaloo Reef. Landward of the drowned reef, the inner shelf is covered by hundreds of mounds (bommies) up to 5 m high and linear ridges up to 1.5 km long and 16 m high. The ridges are uniformly oriented to the north-northeast and several converge at their landward limit. On the basis of their shape and alignment, these ridges are interpreted as relict long-walled parabolic dunes. Their preservation is attributed to cementation of calcareous sands to form aeolianite, prior to the post-glacial marine transgression. Some dune ridges abut areas of reef that rise to sea level and are highly irregular in outline but maintain a broad shore-parallel trend. These are tentatively interpreted as Last Interglacial in age. The mid-shelf and outer shelf are mostly sediment covered with relatively low densities of epibenthic biota and have patches of low-profile ridges that may also be relict reef shorelines. An evolutionary model for the Carnarvon shelf is proposed that relates the formation of drowned fringing reefs and aeolian dunes to Late Quaternary eustatic sea level.
-
It is with great interest that we read the paper by Mueller (2015) who proposes that the majority of small pockmarks with diameters less than about 10 m on the northwest shelf of Australia may be of biotic origin, created by the fish Epinephelus, the Grouper. This hypothesis is based on a spatial association between pockmarks and Epinephelus at a number of sites on the northwest shelf and elsewhere around Australia, and on recent work undertaken on the habitats and observed behaviours of grouper fish in the Gulf of Mexico who excavate sediment from pre-existing solution cavities (Coleman et al., 2010; Wall et al., 2011). However, we contend that critical details have not been taken into account as part of Mueller's (2015) hypothesis, and additional consideration of existing geologic, geomorphic, sedimentologic and geochemical information is required. To make the science more robust, here we present a more comprehensive overview of the information available.
-
This paper presents a new style of bedload parting from western Torres Strait, northern Australia. Outputs from a hydrodynamic model identified an axis of bedload parting centred on the western Torres Strait islands (~142°15"E). Unlike bedload partings described elsewhere in the literature, those in Torres Strait are generated by incoherence between two adjacent tidal regimes as opposed to overtides. Bedload parting is further complicated by the influence of wind-driven currents. During the trade wind season, wind-driven currents counter the reversing tidal currents to a point where peak currents are directed west. The eastwards-directed bedload pathway is only active during the monsoon season. Satellite imagery was used to describe six bedform facies associated with the bedload parting. Bedform morphology was used to indicate sediment supply. Contrary to bedload partings elsewhere, sand ribbons are a distal facies within the western bedload transport pathway despite peak currents directed toward the west throughout the year. This indicates that sediment is preferentially trapped within sand banks near the axis of parting and not transported further west into the Gulf of Carpentaria or Arafura Sea.
-
Seagrass communities in the northwest of Torres Strait are known to disappear episodically over broad areas. Sediment mobility surveys were undertaken within two study areas during the monsoon and trade wind seasons, in the vicinity of Turnagain Island, to find out if the migration of bedforms could explain this disappearance. The two study areas covered sand bank and sand dune environments to compare and contrast their migration characteristics. Repeat multibeam sonar surveys were used to measure dune-crest migration during each season.
-
Monitoring changes in the spatial distribution and health of biotic habitats requires spatially extensive surveys repeated through time. Although a number of habitat distribution mapping methods have been successful in clear, shallow-water coastal environments (e.g. aerial photography and Landsat imagery) and deeper (e.g. multibeam and sidescan sonar) marine environments, these methods fail in highly turbid and shallow environments such as many estuarine ecosystems. To map, model and predict key biotic habitats (seagrasses, green and red macroalgae, polychaete mounds [Ficopamatus enigmaticus] and mussel clumps [Mytilus edulis]) across a range of open and closed estuarine systems on the south-west coast of Western Australia, we integrated post-processed underwater video data with interpolated physical and spatial variables using Random Forest models. Predictive models and associated standard deviation maps were developed from fine-scale habitat cover data. Models performed well for spatial predictions of benthic habitats, with 79-90% of variation explained by depth, latitude, longitude and water quality parameters. The results of this study refine existing baseline maps of estuarine habitats and highlight the importance of biophysical processes driving plant and invertebrate species distribution within estuarine ecosystems. This study also shows that machine-learning techniques, now commonly used in terrestrial systems, also have important applications in coastal marine ecosystems. When applied to video data, these techniques provide a valuable approach to mapping and managing ecosystems that are too turbid for optical methods or too shallow for acoustic methods.