From 1 - 10 / 27
  • Geoscience Australia and Monash University have produced a series of renewable energy capacity factor maps of Australia. Solar photovoltaic, concentrated solar power, wind (150 m hub height) and hybrid wind and solar capacity factor maps are included in this web service. Solar Photovoltaic capacity factor map The minimum capacity factor is <10% and the maximum is 25%. The map is derived from Bureau of Meteorology (2020) data. The scientific colour map is sourced from Crameri (2018). Concentrated Solar Power capacity factor map The minimum capacity factor is 52% and the maximum is 62%. The map is derived from Bureau of Meteorology (2020) data. Minimum exposure cut-off values used are from International Renewable Energy Agency (2012) and Wang (2019). The scientific colour map is sourced from Crameri (2018). Wind (150 m hub height) capacity factor map The minimum capacity factor is <15% and the maximum is 42%. The map is derived from Global Modeling and Assimilation Office (2015) and DNV GL (2016) data. The scientific colour map is sourced from Crameri (2018). Hybrid Wind and Solar capacity factor maps Nine hybrid wind and solar maps are available, divided into 10% intervals of wind to solar ratio (eg. (wind 40% : solar 60%), (wind 50% : solar 50%), (wind 60% : solar 40%) etc.) For all maps the minimum capacity factor is <25% and the maximum is 64%. The maps are derived from Global Modeling and Assimilation Office (2015), DNV GL (2016) and Bureau of Meteorology (2020) data. The scientific colour map is sourced from Crameri (2018). Disclaimer The capacity factor maps are derived from modelling output and not all locations are validated. Geoscience Australia does not guarantee the accuracy of the maps, data, and visualizations presented, and accepts no responsibility for any consequence of their use. Capacity factor values shown in the maps should not be relied upon in an absolute sense when making a commercial decision. Rather they should be strictly interpreted as indicative. Users are urged to exercise caution when using the information and data contained. If you have found an error in this dataset, please let us know by contacting clientservices@ga.gov.au.

  • This web service provides access to groundwater raster products for the Upper Burdekin region, including: inferred relative groundwater recharge potential derived from weightings assigned to qualitative estimates of relative permeability based on mapped soil type and surface geology; Normalised Difference Vegetation Index (NDVI) used to map vegetation with potential access to groundwater in the basalt provinces, and; base surfaces of basalt inferred from sparse available data.

  • This service provides Estimates of Geological and Geophysical Surfaces (EGGS). The data comes from cover thickness models based on magnetic, airborne electromagnetic and borehole measurements of the depth of stratigraphic and chronostratigraphic surfaces and boundaries.

  • This Service represents the National DEM 1 Second Hydrologically Enforced product derived from the National DEM SRTM 1 Second and National Watercourses, lakes and Reservoirs

  • The National Geophysical Grids web coverage service (WCS) will provide a collection of magnetic, gravity and radiometric grids derived from various geophysical measurements made over continental Australia. This particular release will include magnetic, gravity and radiometric grids constructed in 2019, and migrated grids from 2015.

  • This service delivers airborne electromagnetics (AEM) derived conductivity grids for depth intervals representing the top 22 layers from AEM modelling in the West Musgrave region (https://dx.doi.org/10.26186/147969). The grids were generated from the AEM conductivity models released as part of the Western Resource Corridor AusAEM survey (https://dx.doi.org/10.26186/147688), the Earaheedy and Desert Strip AusAEM survey (https://pid.geoscience.gov.au/dataset/ga/145265) and several industry surveys (https://dx.doi.org/10.26186/146278) from the West Musgraves region. The AEM conductivity models resolve important subsurface features for assessing the groundwater system including lithological boundaries, palaeovalleys and hydrostatigraphy.

  • This service contains the NATMAP 1:250,000 scale maps, from the NATMAP Digital Maps 2008 DVD. The large scale single mosaic map covers the entire continent, and is based on the Geocentric Datum of Australia 1994 (GDA94) geographic projection. The maps have been revised using a variety of data sources, including SPOT and Landsat satellite imagery, other government agency information and data supplied by private companies and individuals. The original DVD was produced by Geoscience Australia's National Mapping Division and its predecessor, the Australian Surveying and Land Information Group (AUSLIG).

  • This web service provides access to datasets generated by the North Australian Craton (NAC) Iron Oxide Copper Gold (IOCG) Mineral Potential Assessment. Two outputs were created: a comprehensive assessment, using all available spatial data, limiting data where possible to capture mineral systems older than 1500 ma, and; a coverage assessment, which is constrained to data that have no reliance on outcrop or age of mineralisation.

  • This web service provides access to gridded data produced by Geoscience Australia from studies of Australian groundwater and hydrogeological systems.

  • This service delivers the base of Cenozoic surface and Cenozoic thickness grids for the west Musgrave province. The gridded data are a product of 3D palaeovalley modelling based on airborne electromagnetic conductivity, borehole and geological outcrop data, carried out as part of Geoscience Australia's Exploring for the Future programme. The West Musgrave 3D palaeovalley model report and data files are available at https://dx.doi.org/10.26186/149152.