From 1 - 10 / 243
  • The Marine Survey Multibeam Bathymetry Web Map Service contains the highest-resolution multibeam bathymetry grids available for download on Geoscience Australia's website. These bathymetry grids were collected over numerous multibeam survey programs conducted in Australian mainland and Antarctic waters by both Geoscience Australia and our collaborators. Layers are grouped by survey or region and where available include both the Geoscience Australia and vessel survey identification numbers that contributed to the bathymetry grids. Bathymetry grids have been rendered over a rainbow colour-ramp with minimum and maximum depth values unique for each survey. These values are specified in each survey's layer description. The resolution of each bathymetry grid is also specified in each survey's layer description

  • ESRI Grids of available bathymetry within the bounds of proposed Marine Protected Areas in the Antarctic. Interpolated datasets are also included.

  • The Australian Geological Survey Organistaion, in co-operation with Desmond Fitzgerald and Associates and the Australian Hydrographic Service, has produced a set of digital bathymetry, gravity and magnetic grids for Australia's margin, with resolutions of 250-1000m. They represent a major upgrade of marine ship-track potential field and bathymetry data in Australian waters for the purpose of developing fundamental products for geological interpretation. In integrating data from many sources, levelling techniques have been developed to correct crossover and other errors, and the ship-track data have been merged with satellite and high-resolution onshore sources.

  • <p>Australia has established a network of 58 marine parks within Commonwealth waters covering a total of 3.3 million square kilometres, or 40 per cent of our exclusive economic zone (excluding Australian Antarctic Territory). These parks span a range of settings, from near coastal and shelf habitats to abyssal plains. Parks Australia manages the park network through management plans that came into effect for all parks on 1 July 2018. Geoscience Australia is contributing to their management by collating and interpreting existing environmental data, and through the collection of new marine data. “Eco-narrative” documents are being developed for those parks, where sufficient information is available, delivering collations and interpretations of seafloor geomorphology, oceanography and ecology. Many of these interpretations rely on bathymetric grids and their derived products, including those in this data release. <p>Geoscience Australia has developed a new marine seafloor classification scheme, which uses the two-part seafloor mapping morphology approach of Dove et al (2016). This new scheme is semi-hierarchical and the first step divides the slope of the seafloor into three Morphological Surface categories (Plain, <2°; Slope, 2-10°; Escarpment, >10°). This classification was applied to the portion of the Beaman and Spinnocia (2018) 30 m grid within the marine park. <p>Beaman, R.J. and Spinoccia, M. (2018). High-resolution depth model for Northern Australia - 30 m. Geoscience Australia. <p>Dove, D., Bradwell, T., Carter, G., Cotterill, C., Gafeira, J., Green, S., Krabbendam, M., Mellet, C., Stevenson, A., Stewart, H., Westhead, K., Scott, G., Guinan, J., Judge, M. Monteys, X., Elvenes, S., Baeten, N., Dolan, M., Thorsnes, T., Bjarnadóttir, L., Ottesen, D. (2016). Seabed geomorphology: a twopart classification system. British Geological Survey, Open Report OR/16/001. 13 pages. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • This web service combines two surveys GA-4415 and GA-0348. The Casey Station Bathymetry survey displays one seamless bathymetry grid of 1m resolution. Further details of the data lineage can be found with the associated database. This web service is published with the permission of the CEO, Geoscience Australia.

  • This dataset represents the current extent of bathymetry compilation products delivered by Geoscience Australia as of June 2019. Compilation products have been generated from numerous data sources including survey data, lidar, interpolation and other depth data. Each polygon shows the extent of the compilation dataset, and attributes contain information regarding data sources, product details and access methods. Contributing individual survey data can be found in the AusSeabed Bathymetry Holdings dataset.

  • On behalf of Australia, the Australian Transport Safety Bureau (ATSB) is leading search operations for missing Malaysian airlines flight MH370 in the Southern Indian Ocean. Geoscience Australia provided advice, expertise and support to the ATSB to facilitate bathymetric surveys, which were undertaken to provide a detailed map of the sea floor topography to aid navigation during the underwater search. Bathymetric data was acquired by multibeam sonar mounted on the hull of multiple vessels (GA survey reference: GA-4421, GA-4422 & GA-4430). Bathymetric surveys were conducted from June 2014 to February 2017, collecting over 710,000 square kilometres of data in the search area and along transit lines (to and from the search area). This dataset allows exploration of the seafloor topography through an optimal resolution compilation of tiles across the search and transit areas of the Southern Indian Ocean. The dataset is overlain on a hillshade created from the Optimal resolution bathymetry data. The hillshade was created with the parameters of point illumination azimuth at 45 degrees and altitude of 45 degrees.

  • The Murray Canyons are a group of deeply-incised submarine canyons on a steep 400-km section of the continental slope off Kangaroo Island, South Australia. Some of the canyons are amongst the largest on Earth. The canyons, some 80 km long, descend from the shelf edge to abyssal plain 5200 m deep. Sprigg Canyon, the deepest and one of the largest, has walls 2 km high. The thalwegs of the larger canyons are concave in profile, steepest on the upper continental slope (15?-30?), with about 4?gradient on the mid slope, then level out on the lower slope to merge with the 1? continental rise. Between canyons, the continental slope is slightly convex to linear with a gradient of about 5?-6?. Canyon walls commonly slope at 15?-22?. The passive continental margin narrows to 65-km at the Murray Canyons and links the Bight and Otway Basins. WNW-trending Jurassic-Cretaceous rift structures control the irregular shape of the central canyons. At the western end, large box canyons 1 km deep are incised into thick sediments of the Ceduna Sub-basin. Formed by headscarp erosion, some of these canyons have coalesced by canyon capture. The upper parts of most canyons are cut into Cretaceous sediments and in some places are floored by basement rocks. Large holes, spaced about 5 km apart and up to several hundred metres deep, along the outlet channels of the larger and steeper canyons were probably gouged by turbidity currents resulting from major slope failures at the shelf edge. Quaternary turbidites were deposited on the abyssal plain more than 100 km from the foot of slope. Canyon down-cutting was episodic since the latest Cretaceous, with peak activity since the Oligocene due to strong glacioeustatic fluctations and cycles, with canyon development occurring during lowstands and early transgressions when sediment input at the shelf edge was usually highest. The timing of canyon development is linked to major unconformities within adjacent basins, with down-cutting events recorded or inferred during early Paleocene, Middle Eocene, Early Oligocene, Oligocene/Miocene transition (~24 Ma), mid Miocene (~14 Ma) and latest Miocene-Pleistocene. The early phases involved only siliciclastic sediments, while post-early Eocene canyon cutting was dominated by biogenic carbonates generated on the shelf and upper continental slope. The Murray River dumped its sediment load directly into Sprigg Canyon during extreme lowstands of the Late Pleistocene when the Lacepede Shelf was dry land.

  • The OzEstuaries online GIS contains data for Australian estuaries (coastal waterways) and for oceans in the Australian region. Estuaries data include geomorphic habitat mapping, estuary condition, colour composite images (Landsat, MODIS and Quickbird satellite imagery and aerial photography), benthic classifications (from Landsat satellite imagery), bathymetry and population centres. Oceanic data include dissolved organic matter, chlorophyll concentration, suspended solids concentration and sea surface temperature (using MODIS satellite imagery) and bathymetry. The GIS provides facilities to search for and zoom to estuaries, integrate mapping and imagery datasets, and retrieve statistical information from the OzEstuaries database; allowing users to view spatial and statistical information. The oceanic imagery provides a regional context for coastal waterways. The GIS is part of Geoscience Australia's contribution to the Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management (Coastal CRC). The geomorphic habitat mapping was conducted by Geoscience Australia for the National Land and Water Resources Audit, and is also part of Geoscience Australia's contribution to the Coastal CRC.

  • <p>This resource contains multibeam bathymetry data for Bynoe Harbour collected by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Northern Territory Government (Department of Environment and Natural Resources) during the period between 3 and 27 May 2016 on the RV Solander (survey SOL6432/GA04452). This project was made possible through offset funds provided by INPEX-led Ichthys LNG Project to Northern Territory Government Department of Environment and Natural Resources, and co-investment from Geoscience Australia and Australian Institute of Marine Science. The intent of this four year (2014-2018) program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps that underpin marine resource management decisions. <p>The specific objectives of the survey were to: <p>1. Obtain high resolution geophysical (bathymetry) data for Bynoe Harbour; <p>2. Characterise substrates (acoustic backscatter properties, grainsize, sediment chemistry) for Bynoe Harbour; and <p>3. Collect tidal data for the survey area. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; physical samples of seabed sediments, underwater photography and video of grab sample locations and oceanographic information including tidal data and sound velocity profiles. <p>This dataset comprises multibeam bathymetry data. A detailed account of the survey is provided in: Siwabessy, P.J.W., Smit, N., Atkinson, I., Dando, N., Harries, S., Howard, F.J.F., Li, J., Nicholas W.A., Picard, K., Radke, L.C., Tran, M., Williams, D. and Whiteway, T. 2016. Bynoe Harbour Marine Survey 2016: GA4452/SOL6432 – Post-survey report. Record 2017/04. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2017.004.