From 1 - 10 / 514
  • <div>The Abbot Point to Hydrographers Passage bathymetry survey was acquired for the Australian Hydrographic Office (AHO) onboard the RV Escape during the period 6 Oct 2020 – 16 Mar 2021. This was a contracted survey conducted for the Australian Hydrographic Office by iXblue Pty Ltd as part of the Hydroscheme Industry Partnership Program. The survey area encompases a section of Two-Way Route from Abbot Point through Hydrographers Passage QLD. Bathymetry data was acquired using a Kongsberg EM 2040, and processed using QPS QINSy. The dataset was then exported as a 30m resolution, 32 bit floating point GeoTIFF grid of the survey area.</div><div>This dataset is not to be used for navigational purposes.</div>

  • Total contribution of six recently discovered submerged coral reefs in northern Australia to Holocene neritic CaCO3, CO2, and C is assessed to address a gap in global budgets. CaCO3 production for the reef framework and inter-reefal deposits is 0.26-0.28 Mt which yields 2.36-2.72 x105 mol yr-1 over the mid- to late-Holocene (<10.5 kyr BP); the period in which the reefs have been active. Holocene CO2 and C production is 0.14-0.16 Mt and 0.06-0.07 Mt, yielding 3.23-3.71 and 5.32-6.12 x105 mol yr-1, respectively. Coral and coralline algae are the dominant sources of Holocene CaCO3 although foraminifers and molluscs are the dominant constituents of inter-reefal deposits. The total amount of Holocene neritic CaCO3 produced by the six submerged coral reefs is several orders of magnitude smaller than that calculated using accepted CaCO3 production values because of very low production, a 'give-up' growth history, and presumed significant dissolution and exports. Total global contribution of submerged reefs to Holocene neritic CaCO3 is estimated to be 0.26-0.62 Gt or 2.55-6.17 x108 mol yr-1, which yields 0.15-0.37 Gt CO2 (3.48-8.42 x108 mol yr-1) and 0.07-0.17 Gt C (5.74-13.99 x108 mol yr-1). Contributions from submerged coral reefs in Australia are estimated to be 0.05 Gt CaCO3 (0.48 x108 mol yr-1), 0.03 Gt CO2 (0.65 x108 mol yr-1), and 0.01 Gt C (1.08 x108 mol yr-1) for an emergent reef area of 47.9 x103 km2. The dilemma remains that the global area and CaCO3 mass of submerged coral reefs are currently unknown. It is inevitable that many more submerged coral reefs will be found. Our findings imply that submerged coral reefs are a small but fundamental source of Holocene neritic CaCO3, CO2, and C that is poorly-quantified for global budgets.

  • This product is no longer available.

  • This dataset contains sediment and geochemistry information for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012 on RV Solander (survey GA0339/SOL5650). Further information on the survey is available in the post-survey report published as Geoscience Australia Record 2013/38: Nichol, S.L., Howard, F.J.F., Kool, J., Stowar, M., Bouchet, P., Radke, L., Siwabessy, J., Przeslawski, R., Picard, K., Alvarez de Glasby, B., Colquhoun, J., Letessier, T. & Heyward, A. 2013. Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey: GA0339/SOL5650 - Post Survey Report. Record 2013/38. Geoscience Australia: Canberra. (GEOCAT #76658).

  • The Oceanic Shoals Commonwealth Marine Reserve (CMR) (>71,000 km2) is located in the Timor Sea and is part of the National Representative System of Marine Protected Areas of Australia. The Reserve incorporates extensive areas of carbonate banks and terraces that are recognised in the North and North West Marine Region Management Plans as Key Ecological Features (KEFs). Although poorly studied, these features have been identified as potential biodiversity hotspots for the Australian tropical north. As part of the National Environment Research Program (NERP), Geoscience Australia (GA) in collaboration with the Australian Institute of Marine Sciences (AIMS) undertook a marine biodiversity survey in 2012 to improve the knowledge of this area and better understand the importance of these KEFs. Amongst the many activities undertaken, continuous high-resolution multibeam mapping, video and still camera observations, and physical seabed sampling of four areas covering 510 km2 within the western side of the CMR was completed. Multibeam imagery reveals a high geomorphic diversity in the Oceanic Shoals CMR, with numerous banks and terraces, elevated 30 to 65 m above the generally flat seabed (~105 m water depth), that provide hard substrate for benthic communities. The surrounding plains are characterised by fields of depressions (pockmarks) formed in soft silty sediments that are generally barren of any epibenthos. A distinctive feature of many pockmarks is a linear scour mark that extends several tens of metres (up to 150 m) from pockmark depressions. Previous numerical and flume tank simulations have shown that scouring of pockmarks occurs in the direction of the dominant near-seabed flow. These geomorphic features may therefore serve as a proxy for local-scale bottom currents, which may in turn inform on sediment processes operating in these areas and contribute to the understanding of the distribution of biodiversity. This study focused on characterising these seabed scoured depressions and investigating their potential as an environmental proxy for habitat studies. The study used ArcGIS spatial analyst tools to quantify the features and explored their potential relationships with other variables (e.g. multibeam backscatter, regional modelled bottom stress, biological abundance and presence/absence) to provide insight into their development, and contribute to a better understanding of the environment surrounding carbonate banks. Preliminary results show a relationship between pockmark types, i.e. with or without scour mark, and backscatter strength. This relationship suggests some additional shallow sub-surface control, mainly related to the presence of buried carbonate bank. In addition, the results suggest that tidal flows are redirected by the banks, leading to locally varied flow directions and 'shadowing' in the lee of the larger banks. This in turn is likely to have an influence on the observed density and abundance of benthic assemblages.

  • The Albany Canyon complex off southwest Australia extends 700 km from Cape Leeuwin to east of Esperance. The Canyons head on the uppermost continental slope and extend up to 90 km offshore, to the lowermost slope and onto the abyssal plain. The largest have cut down 1500-2000 m in places. In general, on the upper slope they have cut down into harder, older rocks: Canyon walls are steep, thalwegs slope at up to 15?, and ancient structures control their orientation. On the lower slope the Canyons generally have not reached harder rocks, Canyon walls are less steep, thalweg slopes are less, and they are generally oriented down slope. The Canyons have exposed Jurassic and younger sequences: their nature and information from seismic profiles, have helped us build an understanding of Canyon history. Flood plain deposition rather than erosion occurred during Australia-Antarctic rifting in the Late Jurassic, not supporting cutting of river Canyons. Shallow marine sedimentation characterised the Early Cretaceous, when gradients were low and Canyon cutting unlikely. Deep river Canyons were probably cut during uplift and erosion immediately before the Santonian break-up from Antarctica, and their paths controlled later marine Canyons. Only with the onset of rapid seafloor spreading and subsidence in the Middle Eocene (~43 Ma) did gradients steepen and major marine Canyon cutting become possible. The major sea level fall at the Middle/Late Eocene boundary (~40 Ma) brought sediment to the edge of the continental shelf, which may have initiated the Canyons. Carbonate sedimentation replaced siliciclastic sedimentation in the Late Middle Eocene, but carbonate grains from the outer shelf could cut the Canyons, largely during periods of low sea level.

  • This product is no longer available.

  • The data currently held for bathymetry has been extracted from the GEBCO (General Bathymetric Chart of the Oceans) produced by the Natural Environment Research Council (UK).