bathymetry
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
This is a compilation of all the bathymetry data that GA holds in its database for the area that covers the Diamantina Fracture Zone to the Naturaliste Plateau. This dataset consist of different 6X4 degrees tiles that are: Tiles SI48,SJ48,SK48,SL48, SI47,SJ47, SK47,SL47, SJ46,SK46,SL46, SK45 and SL45)
-
This paper presents a new style of bedload parting from western Torres Strait, northern Australia. Outputs from a hydrodynamic model identified an axis of bedload parting centred on the western Torres Strait islands (~142°15"E). Unlike bedload partings described elsewhere in the literature, those in Torres Strait are generated by incoherence between two adjacent tidal regimes as opposed to overtides. Bedload parting is further complicated by the influence of wind-driven currents. During the trade wind season, wind-driven currents counter the reversing tidal currents to a point where peak currents are directed west. The eastwards-directed bedload pathway is only active during the monsoon season. Satellite imagery was used to describe six bedform facies associated with the bedload parting. Bedform morphology was used to indicate sediment supply. Contrary to bedload partings elsewhere, sand ribbons are a distal facies within the western bedload transport pathway despite peak currents directed toward the west throughout the year. This indicates that sediment is preferentially trapped within sand banks near the axis of parting and not transported further west into the Gulf of Carpentaria or Arafura Sea.
-
The Queen Charlotte Fault (QCF) off western Canada is the northern equivalent to the San Andreas Pacific - America boundary. Geomorphology and surface processes associated with the QCF system have been revealed in unprecedented detail by recent seabed mapping surveys. The QCF bisects the continental shelf of British Columbia forming a fault-valley that is visible in multibeam sonar bathymetry data. The occurrence of the fault within a valley, and its association with what appear to be graben structures, suggest the fault may exhibit minor rifting (extension) as well as strike-slip motions in the region offshore from Haida Gwaii (Queen Charlotte Islands). Fault-valley formation, slumping and stranding of submarine canyon thalwegs are geomorphic expressions of QCF tectonism, illustrating the general applications of multibeam technology to marine geophysical research.
-
Geoscience Australia is supporting the exploration and development of offshore oil and gas resources and establishment of Australia's national representative system of marine protected areas through provision of spatial information about the physical and biological character of the seabed. Central to this approach is prediction of Australia's seabed biodiversity from spatially continuous data of physical seabed properties. However, information for these properties is usually collected at sparsely-distributed discrete locations, particularly in the deep ocean. Thus, methods for generating spatially continuous information from point samples become essential tools. Such methods are, however, often data- or even variable- specific and it is difficult to select an appropriate method for any given dataset. Improving the accuracy of these physical data for biodiversity prediction, by searching for the most robust spatial interpolation methods to predict physical seabed properties, is essential to better inform resource management practises. In this regard, we conducted a simulation experiment to compare the performance of statistical and mathematical methods for spatial interpolation using samples of seabed mud content across the Australian margin. Five factors that affect the accuracy of spatial interpolation were considered: 1) region; 2) statistical method; 3) sample density; 4) searching neighbourhood; and 5) sample stratification by geomorphic provinces. Bathymetry, distance-to-coast and slope were used as secondary variables. In this study, we only report the results of the comparison of 14 methods (37 sub-methods) using samples of seabed mud content with five levels of sample density across the southwest Australian margin. The results of the simulation experiment can be applied to spatial data modelling of various physical parameters in different disciplines and have application to a variety of resource management applications for Australia's marine region.
-
Total contribution of six recently discovered submerged coral reefs in northern Australia to Holocene neritic CaCO3, CO2, and C is assessed to address a gap in global budgets. CaCO3 production for the reef framework and inter-reefal deposits is 0.26-0.28 Mt which yields 2.36-2.72 x105 mol yr-1 over the mid- to late-Holocene (<10.5 kyr BP); the period in which the reefs have been active. Holocene CO2 and C production is 0.14-0.16 Mt and 0.06-0.07 Mt, yielding 3.23-3.71 and 5.32-6.12 x105 mol yr-1, respectively. Coral and coralline algae are the dominant sources of Holocene CaCO3 although foraminifers and molluscs are the dominant constituents of inter-reefal deposits. The total amount of Holocene neritic CaCO3 produced by the six submerged coral reefs is several orders of magnitude smaller than that calculated using accepted CaCO3 production values because of very low production, a 'give-up' growth history, and presumed significant dissolution and exports. Total global contribution of submerged reefs to Holocene neritic CaCO3 is estimated to be 0.26-0.62 Gt or 2.55-6.17 x108 mol yr-1, which yields 0.15-0.37 Gt CO2 (3.48-8.42 x108 mol yr-1) and 0.07-0.17 Gt C (5.74-13.99 x108 mol yr-1). Contributions from submerged coral reefs in Australia are estimated to be 0.05 Gt CaCO3 (0.48 x108 mol yr-1), 0.03 Gt CO2 (0.65 x108 mol yr-1), and 0.01 Gt C (1.08 x108 mol yr-1) for an emergent reef area of 47.9 x103 km2. The dilemma remains that the global area and CaCO3 mass of submerged coral reefs are currently unknown. It is inevitable that many more submerged coral reefs will be found. Our findings imply that submerged coral reefs are a small but fundamental source of Holocene neritic CaCO3, CO2, and C that is poorly-quantified for global budgets.
-
Geoscience Australia Marine Survey 302: Final Survey Report. by Fugro Robertson Inc, Nov. 2006 - Jan. 2007.
-
No abstract available
-
Abstract: The extent to which fluids may leak from sedimentary basins to the seabed is a critical issue for assessing the potential of a basin for carbon capture and storage. The Petrel Sub-basin, located beneath central and eastern Joseph Bonaparte Gulf in tropical northern Australia, is identified as potentially suitable for the geological storage of CO2 because of its geological characteristics and proximity to offshore gas and petroleum resources. In May 2012, a multidisciplinary marine survey was undertaken to collect data in two targeted areas of the Petrel Sub-basin to facilitate an assessment of CO2 storage potential. Multibeam bathymetry and backscatter mapping (650 km2 over 5,300 line km), combined with acoustic sub-bottom profiling (650 line km) and geomorphological and sediment characterisation of the seabed was undertaken above the CO2 supercritical seal boundary of the sub-basin. Features identified in the high resolution (2 m) bathymetry data include carbonate banks, ridges, pockmark fields and fields of low amplitude hummocks located directly adjacent to banks. Unit and composite pockmarks and clusters of pockmarks are present on plains and adjacent to, and on, carbonate ridges. It is postulated that there are three possible sources for fluids and fluidised gas involved in pockmark formation: deep fluids from the basin, post-Cretaceous intra-formational, layer-bound fluids, and shallow-sourced fluidised gas from the breakdown of organic matter following the Holocene marine transgression of Joseph Bonaparte Gulf.
-
This introductory chapter provides an overview of the book's contents and definitions of key concepts including benthic habitat, potential habitat and seafloor geomorphology. The chapter concludes with a summary of commonly used habitat mapping technologies. Benthic (seafloor) habitats are physically distinct areas of seabed that are associated with particular species, communities or assemblages that consistently occur together. Benthic habitat maps are spatial representations of physically distinct areas of seabed that are associated with particular groups of plants and animals. Habitat maps can illustrate the nature, distribution and extent of distinct physical environments present and importantly they can predict the distribution of the associated species and communities.
-
Lord Howe Island in the southwest Pacific Ocean is the subaerial remnant of a Late Miocene hot-spot volcano. Erosion of the island has formed a shallow (20 - 120 m) sub-tropical carbonate shelf 24 km wide and 36 km long. On the mid shelf an extensive relict coral reef (165 km2) surrounds the island in water depths of 30-40 m. The relict reef comprises sand sheet, macroalgae and hardground habitats. Inboard of the relict reef a sandy basin (mean water depth 45 m) has thick sand deposits. Outboard of the relict reef is a relatively flat outer shelf (mean depth 60 m) with bedrock exposures and sandy habitat. Infauna species abundance and richness were similar for sediment samples collected on the outer shelf and relict reef features, while samples from the sandy basin had significantly lower infauna abundance and richness. The irregular shelf morphology appears to determine the distribution and character of sandy substrates and local oceanographic conditions, which in turn influence the distribution of different types of infauna communities.