From 1 - 10 / 784
  • Geoscience Australia marine reconnaissance survey TAN0713 to the Lord Howe Rise offshore eastern Australia was completed as part of the Federal Government¿s Offshore Energy Security Program between 7 October and 22 November 2007 using the New Zealand Government¿s research vessel Tangaroa. The survey was designed to sample key, deep-sea environments on the east Australian margin (a relatively poorly-studied shelf region in terms of sedimentology and benthic habitats) to better define the Capel and Faust basins, which are two major sedimentary basins beneath the Lord Howe Rise. Samples recovered on the survey contribute to a better understanding of the geology of the basins and assist with an appraisal of their petroleum potential. They also add to the inventory of baseline data on deep-sea sediments in Australia. The principal scientific objectives of the survey were to: (1) characterise the physical properties of the seabed associated with the Capel and Faust basins and Gifford Guyot; (2) investigate the geological history of the Capel and Faust basins from a geophysical and geological perspective; and (3) characterise the abiotic and biotic relationships on an offshore submerged plateau, a seamount, and locations where fluid escape features were evident. This dataset comprises total oxygen uptake and total carbon fluxes from core incubation experiments. Some relevant publications which pertain to these datasets include: 1. Heap, A.D., Hughes, M., Anderson, T., Nichol, S., Hashimoto, T., Daniell, J., Przeslawski, R., Payne, D., Radke, L., and Shipboard Party, (2009). Seabed Environments and Subsurface Geology of the Capel and Faust basins and Gifford Guyot, Eastern Australia ¿ post survey report. Geoscience Australia, Record 2009/22, 166pp. 2. Radke, L.C. Heap, A.D., Douglas, G., Nichol, S., Trafford, J., Li, J., and Przeslawski, R. 2011. A geochemical characterization of deep-sea floor sediments of the northern Lord Howe Rise. Deep Sea Research II 58: 909-921

  • This document sets out the five year strategy for the marine geoscience program at Geoscience Australia, for the period 2018-2023. This strategy delivers to Geoscience Australia's Strategy 2028 in the area of 'Managing Australia's marine jurisdictions to support sustainable use of our marine environment.' The strategy includes four key activities: (1) National Coordination of Seabed Mapping; (2) Data Acquisition for Marine and Coastal Baselines and Monitoring; (3) Marine Geoscience Data Accessibility, and; (4) Marine Geoscience Advice.

  • This dataset contains species identifications of sponges collected during survey SOL4934 (R.V. Solander, 27 August - 24 September, 2009) and SOL5117 (R.V. Solander, 30 July - 27 August, 2010). Animals were collected from the Joseph Bonaparte Gulf with a benthic sled. Specimens were lodged at the Museum and Art Gallery of the NT (MAGNT). Species-level identifications were undertaken by Dr Belinda Alvarez de Glasby at the MAGNT and were delivered to Geoscience Australia on the 31 July 2012 . See GA Record 2011/08 and 2010/09 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.

  • Marine survey data compiled by Peter Butler in the Petroleum and Marine Division. The project is ongoing, and will be updated upon completion.

  • Complete set of 24 sheets This product is no longer available.

  • This dataset contains species identifications of macro-benthic worms collected during survey GA2476 (R.V. Solander, 12 August - 15 September 2008). Animals were collected from the Western Australian Margin with a BODO sediment grab or rock dredge. Specimens were lodged at Museum of Victoria on the 10 March 2009. Species-level identifications were undertaken by Robin Wilson at the Museum of Victoria and were delivered to Geoscience Australia on the 7 May 2009. See GA Record 2009/02 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.

  • In September and October of 2011 Geoscience Australia surveyed part of the offshore northern Perth Basin in order to map potential sites of natural hydrocarbon seepage. The primary objectives of the survey were to map the spatial distribution of seepage sites and characterise the nature of the seepage at these sites (gas vs oil, macroseepage vs microseepage; palaeo vs modern day seepage) on the basis of: acoustic signatures in the water column, shallow subsurface and on the seabed; geochemical signatures in rock and sediment samples and the water column; and biological signatures on the seabed. Areas of potential natural hydrocarbon seepage that were surveyed included proven (drilled) oil and gas accumulations, a breached structure, undrilled hydrocarbon prospects, and areas with potential signatures of fluid seepage identified in seismic, satellite remote sensing and multibeam bathymetry data. Within each of these areas the survey acquired: water column measurements with the CTD; acoustic data with single- and multi-beam echosounders, sidescan sonar and sub-bottom profiler (sidescan not acquired in Area F as it was too deep in places); and sediment and biological samples with the Smith-McIntyre Grab. In addition, data were collected with a remotely operated vehicle (ROV), integrated hydrocarbon sensor array, and CO2 sensor in selected areas. Sampling with the gravity corer had limited success in many of the more shallow areas (A-E) due to the coarse sandy nature of the seabed sediments. This dataset comprises mineraology of the upper 2 cm of seabed sediment. The minerals include quartz, calcite and aragonite. Data are also provided on the mol% of Mg calcite.

  • This map was created from the Australian Maritime Boundaries Information System (AMBIS). It depicts the various jurisdictional limits and zones which exist within Australia's maritime jurisdiction. as at 2002.

  • Geoscience Australia is supporting work to protect the unique assemblages of organisms that live on the Antarctic seafloor. Australia claims 42 per cent of Antarctica as part of our territory, and this includes a vast marine jurisdiction covering an area of 2.2 million km2. Protecting the marine environments and biota within this East Antarctic region is a high priority, and has recently resulted in the development of a representative system of Marine Protected Areas (MPAs), with four areas on the East Antarctic margin proposed for protection. The proposed MPA network is currently under consideration by the Commission for the Conservation of Antarctic Marine Living Resources.