From 1 - 10 / 630
  • Displays the coverage of publicly available digital aeromagnetic data. The map legend is coloured according to the line spacing of the survey with broader line spacings (lower resolution surveys) displayed in shades of blue. Closer line spacings (higher resolution surveys are displayed in red, purple and coral.

  • This map shows public and private land tenure, including Aboriginal and Torres Strait Islander land for the whole of Australia at a scale of 1:4.7 million. The land tenure boundaries depicted on this map generally define broadly classified areas greater than 50 square kilometres. Aboriginal land areas between 0.1 and 100 square kilometres are shown more comprehensively by symbols. The information on this map is complemented by statistical tables giving the total area of the land tenure categories for each state and territory. Also available as GIS data.

  • Hyperspectral images from the Eastern Fold Belt of the Mount Isa Inlier, released by the collaborative Queensland NGMM project between GSQ and CSIRO, were validated as new tool for the detection of IOCG related alteration. High resolution of mineral maps derived from hyperspectral imaging (4.5m/pixel) enables the recognition of various types of hydrothermal alteration patterns and the localisation of fluid pathways. Groundtruthing of a suite of mineral maps was conducted in 2007. Though sample analyses in the lab is still in process, but some preliminary results already show some promising features. In summary hyperspectral images provide a powerful tool for the recognition of various hydrothermal alteration patterns and could be used in combination with other geophysical remote sensing data, such as radiometrics and magnetics. Limitations of this technique are defined by unsatisfactory coverage of mineral maps, man made features, river systems and distribution and composition of debris. A good knowledge of the local geology is necessary to extract the full information provided by the mineral maps. Calibration of ASTER data with the hyperspectral data can hopefully extend interpretation made from the HyMap data into adjacent areas, which are only covered by ASTER. 60pp final report and databases.

  • 2nd edition Available as a GA Library resource.

  • Bathurst NSW regolith-landforms map 1:250 000

  • Gravity station location map, updated to October 2007

  • This service is produced for the National Map project. It provides seamless topographic greyscale mapping for the whole of Australia, including the external territories of Cocos (Keeling) Islands, Christmas Island, Norfolk Island and Lord Howe Island. The service consists of Geoscience Australia data at smaller scales and OpenStreetMap data is used at larger scales. The service contains layer scale dependencies.

  • The use of airborne hyperspectral imagery for mapping soil surface mineralogy is examined for the semi-arid Tick Hill test site (20 km2) near Mount Isa in north-western Queensland. Mineral maps at 4.5 m pixel resolution include the abundances and physicochemistries (chemical composition and crystal disorder) of kaolin, illite-muscovite, and Al smectite (both montmorillonite and beidellite), as well as iron oxide, hydrated silica (opal), and soil/rock water (bound and unbound). Validation of these hyperspectral mineral maps involved field sampling (34 sites) and laboratory analyses (spectral reflectance and X-ray diffraction). The field spectral data were processed for their mineral information content the same way as the airborne HyMap data processing. The results showed significant spatial and statistical correlation. The mineral maps provide more detailed surface compositional information compared with the published soil and geology maps and other geoscience data (airborne radiometrics and digital elevation model). However, there is no apparent correlation between the published soil types (i.e. Ferrosols, Vertosols, and Tenosols) and the hyperspectral mineral maps (e.g. iron oxide-rich areas are not mapped as Ferrosols and smectite-rich areas are not mapped as Vertosols). This lack of correlation is interpreted to be related to the current lack of spatially comprehensive mineralogy for existing regional soil mapping. If correct, then this new, quantitative mineral mapping data has the potential to improve not just soil mapping but also soil and water catchment monitoring and modeling at local to regional scales. The challenges to achieving this outcome include gaining access to continental-scale hyperspectral data and models that link the surface mineralogy to subsurface soil characteristics/processes.

  • This bulk set comprises 10 copies of the Rockhampton River 1:100 000 topographic map and 10 copies of the Jacobs River 1:100 000 topographic map. These are the same maps that are included in the Topographic Map kit, catalogue item # 23002. The maps can also be used with the bulk set of 10 Topographic Map student manuals (catalogue item 30836) and the Introduction to Topographic Maps (catalogue item 23001). Suitable for secondary years 7-12.