From 1 - 10 / 408
  • The information contained in the data set is fundamental to evaluation of the mineral potential of the Cape York Peninsula. In particular the geology layer provides the context for locating known mineral and energy deposits and potentially mineralised geological environments. Geology also provides important information underpinning the nature and distribution of landforms, regolith materials, soils and vegetation, and for managing catchment systems. Geology and regolith data was digitised off existing maps covering Cape York Peninsula Land Use Strategy (CYPLUS) project area.

  • Outlet sediment (or overbank) samples from 99 catchments in the Thomson region have been examined by conventional geochemical analytical methods and by partial extraction using Mobile Metal Ion (MMI) leach. Elements such as Pb have good correlation with known mineral deposits using conventional (near-total digestion) methods, whilst elements such as Cu, Au and Ag show a better correlation with known mineral deposits when MMI concentrations are used. This study shows that very low density sampling of catchment outlet sediments (1 site/1540 km2) provides useful and possibly predictive geochemical information for mineral exploration in areas dominated by transported regolith.

  • Geoscience Australia (GA) was engaged by Sydney Water Corporation (SW) to review existing geological, geophysical and geotechnical data from the Sydney region in an effort to better understand seismic hazard in SW's area of operations. The main motivation is that this information can be used to improve SW's understanding of the level of earthquake risk to their infrastructure in order to support their asset management practices. Of particular interest is improving SW's understanding of asset damage or loss and potential network disruption following a large earthquake. One of the main factors influencing earthquake hazard in the Sydney Water area of operations is the likelihood of a large earthquake to the west of Sydney on what is known as the Lapstone Structural Complex. Research conducted by Geoscience Australia suggests that large earthquakes in the Lapstone Structural Complex are extremely rare (i.e. they may only happen once every few million years). This means that the area probably does not contribute as much to the seismic hazard in Sydney as has been previously thought. An equally important factor is the response of near-surface geological materials to earthquake shaking. Two seismic site classification maps for the Sydney region have been developed here to characterise materials in terms of their potential response. One uses the modified United States National Earthquake Hazard Reduction Program (NEHRP) classification scheme, while the other uses the Australian Earthquake Loading Standard (AS1170.4-2007) classification scheme. Assessment and validation of the classifications against independently acquired data from sub-surface investigations in the region suggest that both classifications provide a satisfactory representation of the distribution of materials and their potential to amplify earthquake energy. The exception to this outcome is the area underlain by the Botany Basin, where geophysical investigations and drilling data have identified the thicker basin fill sediments as having the potential to effectively increase earthquake hazard. The aforementioned AS1170.4 site classification was used to generate Australian Standard (AS1170.4-2007) earthquake hazard maps covering SW's area of operations. The analyses were completed for three spectral periods (0 s, 0.2 s and 1.0 s) and two return periods (500 years and 800 years). Results show that earthquake shaking at 0.2 s spectral period produced the highest hazard at both return periods. Overall, areas characterised by the presence of unconsolidated Cenozoic sedimentary units exhibited the highest earthquake hazard under all conditions. The modified NEHRP site classification outputs were used to produce a probabilistic seismic hazard assessment for the SW area of operations, using the same spectral periods and return periods. Comparison of the AS1170.4-2007 and EQRM outputs reveal several key findings. Firstly, the use of the modified NEHRP site classification scheme better differentiates the properties of geological materials, and therefore the seismic hazard, across the SW area of operations. Secondly, the probabilistic seismic hazard assessment produced values that were up to 6 times lower than those generated using the Australian Standard methodology. Lastly, regardless of the site classification schema or hazard methodology employed, areas characterised by relatively unconsolidated Cenozoic (predominantly Quaternary) sedimentary deposits always represented the highest levels of earthquake hazard.

  • Analytical data for 10 major oxides (Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2 and TiO2), 16 total trace elements (As, Ba, Ce, Co, Cr, Ga, Nb, Ni, Pb, Rb, Sr, Th, V, Y, Zn and Zr), 14 aqua regia extractable elements (Ag, As, Bi, Cd, Ce, Co, Cs, Cu, Fe, La, Li, Mn, Mo and Pb), Loss On Ignition (LOI) and pH from >3500 soil samples from two continents (Australia and Europe) are presented and compared to (1) the composition of the upper crust, (2) published world soil average values, and (3) data from other continental-scale soil surveys. It is demonstrated that average upper continental crust values do not provide reliable estimates for natural concentrations of elements in soils. For many elements there exist substantial differences between published world soil averages and the median concentrations observed on two continents. Direct comparison with other continental datasets is hampered by the fact that often mean, instead of the statistically more correct median, is reported. Using a database of the worldwide distribution of lithological units, it can be demonstrated that lithology is a poor predictor of soil chemistry. Climate-related processes such as glaciation and weathering are strong modifiers of the geochemical signature inherited from bedrock during pedogenesis. To overcome existing shortcomings of predicted global or world soil geochemical reference values, we propose Preliminary Empirical Global Soil reference values based on analytical results of a representative number of soil samples from two continents (PEGS2).

  • Map(s) of Ga (gallium) concentration (Total content, Aqua Regia soluble content, and/or Mobile Metal Ion soluble content) in Top Outlet Sediment (TOS) and/or Bottom Outlet Sediment (BOS) samples, dry-sieved to <2 mm and/or <75 um grain size fractions. Source: The Geochemical Atlas of Australia (Caritat and Cooper, 2011)

  • Map(s) of Yb (ytterbium) concentration (Total content, Aqua Regia soluble content, and/or Mobile Metal Ion soluble content) in Top Outlet Sediment (TOS) and/or Bottom Outlet Sediment (BOS) samples, dry-sieved to <2 mm and/or <75 um grain size fractions. Source: The Geochemical Atlas of Australia (Caritat and Cooper, 2011)

  • Map(s) of Cr (chromium) concentration (Total content, Aqua Regia soluble content, and/or Mobile Metal Ion soluble content) in Top Outlet Sediment (TOS) and/or Bottom Outlet Sediment (BOS) samples, dry-sieved to <2 mm and/or <75 um grain size fractions. Source: The Geochemical Atlas of Australia (Caritat and Cooper, 2011)

  • Map(s) of Ti (titanium) concentration (Total content, Aqua Regia soluble content, and/or Mobile Metal Ion soluble content) in Top Outlet Sediment (TOS) and/or Bottom Outlet Sediment (BOS) samples, dry-sieved to <2 mm and/or <75 um grain size fractions. Source: The Geochemical Atlas of Australia (Caritat and Cooper, 2011)

  • A new project aimed at unravelling the geochemical composition of Australia's regolith has recently been approved under the Australian Government's new Onshore Energy Security Initiative (OESI). The primary aim of the National Geochemical Survey of Australia (NGSA) will be to provide actual concentrations and distributions of elements useful in targeting energy resources (uranium, thorium, other elements indicative of hot granites, etc.). The project will complement other OESI projects focussing on airborne radiometrics, airborne electro-magnetics and geothermal resources. The NGSA project will adopt a cost-effective, ultra-low density, landscape-based sampling approach to select sampling sites. Collection, preparation and analysis of surface and near-surface transported regolith samples will closely follow protocols established during pilot projects recently carried out by Geoscience Australia and the Cooperative Research Centre for Landscape Environments and Mineral Exploration, which revealed strong bedrock signatures in those materials.