From 1 - 10 / 174
  • The ratio of benthic silicate (SiO4 or DSi1) vs carbon dioxide (CO2) fluxes at 299/341 (87%) sites in 10 Australian estuaries was 0.15 to 0.19 (r2=0.8), indicating diatoms 2,3 as the major type of organic material (OM) being degraded in the sediments . Diatoms contributed 33% of the degradable OM at the remaining 42 (13%) sites. Diatomaceous phytoplankton was thus central to nutrient cycling in these estuaries. Dam-induced DSi depletion in coastal waters, a cause of toxic non-silicious algal blooms is now a global problem1. Our investigation indicated that DSi has another and potentially important global role in nutrient cycling in coastal waterways, also prompting a new DSi-dependent nutrient cycling model. The Si-opal inclusion (frustule) in living diatoms confers a density that causes rapid settling to the sediments4 where denitrification recycles N2 to an atmospheric sink, in this way lowering internal N cycling and preventing eutrophication5. Also, DSi is recycled quantitatively to the water column, participating in repeated cycles of diatom productivity. The silicate-diatom-sediment nexus is thus sustained and the N-loss processes of denitrification and burial are sustained.

  • This dataset maps the geomorphic habitat environments (facies) for 103 Western Australia coastal waterways. The classification system contains 11 easily identifiable and representative environments: Barrier/back-barrier, Central basin, Channel, Coral, Flood- and Ebb-tide Delta, Fluvial (bay-head) Delta, Intertidal Flats, Mangrove, Rocky Reef, Saltmarsh/Saltflat, Tidal Sand Banks (and Unassigned). These types represent habitats found across all coastal systems in Australia. Western Australia has a diverse range of Estuaries due to different climates. Ranging from mostly "near pristine" and tide influenced estuaries in the north to "near pristine" wave dominated estuaries in the southwest region.

  • This Milestone Report documents the results of the analysis of sediment samples collected during the survey of Sydney Harbour in August, 2003. The samples were collected by Geoscience Australia (GA) and Defence Science and Technology Organisation (DSTO). The sediment sampling programme was undertaken as part of the coastal geomorphology and classification sub-project of the Coastal CRC - Coastal Water Habitat Mapping Project. Samples were collected to assess the physical character of the sediments and map their distribution for comparison with the geomorphology of the estuary floor using new and existing swath bathymetry data. The analysis of the sediment samples will be used to groundtruth the areas surveyed with the Coastal CRC's Reson SeaBat 8125 multibeam sonar mapping system. Approximately one third of the targeted area was covered by the Seabat 8125 in the first survey, due to problems with the survey boat. The remaining area will be surveyed in the second Sydney Harbour survey, which is planned for September/October 2004. The sediment data will be used to assess how the physical properties of the benthos vary spatially and how they influence acoustic backscatter waveforms to classify benthic habitats. The study builds upon the existing knowledge of the geomorphology of the seabed in Sydney Harbour. The report also discusses issues of interpretation and equipment selection for the toolkit as well as other completed work.

  • This dataset maps the geomorphic habitat environments (facies) for 36 South Australian coastal waterways. The classification system contains 12 easily identifiable and representative environments: Barrier/back-barrier, Bedrock, Central Basin, Channel, Coral, Flood- and Ebb-tide Delta, Fluvial (bay-head) Delta, Intertidal Flats, Mangrove, Rocky Reef, Saltmarsh/Saltflat, Tidal Sand Banks (and Unassigned). These types represent habitats found across all coastal systems in Australia. Most of the 36 coastal waterways have a "Modified" environmental condition (as opposed to "Near Pristine"), according to the National Land and Water Resources Audit definition.

  • In early autumn 2006 (14th March to 4th April), Geoscience Australia conducted a field survey to investigate the major processes controlling water quality in Wellstead Estuary, Gordon Inlet and Beaufort Inlet. This project aimed to address critical knowledge gaps in understanding the impact of sediment-water interactions on water quality in each estuary, in particular, to identify the major controls on nutrient abundance and availability. The impacts of sediment-water interactions on overall water quality took into account: 1. shallowness of the estuaries and long water residence time; 2. productivity of microbenthic algae; and 3. the type of aquatic plant growth. Recommendations for the future management of these estuaries included: 1. Reducing nitrogen loads from the catchments of Wellstead Estuary and Gordon Inlet, and reducing the phosphorus loads from the catchment of Beaufort inlet; 2. Monitoring the abundance of macroalgae in Wellstead Estuary, the abundance of macrophytes in Gordon Inlet and the water column Chl-a concentrations in Beaufort Inlet.

  • In a recent paper, Dye (2006) analyzed the distribution of species of macrobenthos and meiobenthos within two geomorphic facies of four small intermittently closed and open estuaries in New South Wales, Australia (colloquially known as ICOLLs). We believe that Dye's (2006) study is not an appropriate test of the Roy et al. (2001) habitat classification, and consequently several of the hypotheses posed by Dye do not follow logically from their model.

  • The coastal zone is arguably the most difficult geographical region to capture as data because of its dynamic nature. Yet, coastal geomorphology is fundamental data required in studies of the potential impacts of climate change. Anthropogenic and natural structural features are commonly mapped individually, with their inherent specific purposes and constraints, and subsequently overlain to provide map products. This coastal geomorphic mapping project centered on a major coastal metropolitan area between Lake Illawarra and Newcastle, NSW, has in contrast classified both anthropogenic and natural geomorphological features within the one dataset to improve inundation modelling. Desktop mapping was undertaken using the Australian National Coastal Geomorphic (Polygon) Classification being developed by Geoscience Australia and supported by the Department of Climate Change. Polygons were identified from 50cm and 1m aerial imagery. These data were utilized in parallel with previous maps including for example 1:25K Quaternary surface geology, acid sulphate soil risk maps as well as 1:100K bedrock geology polygon maps. Polygons were created to capture data from the inner shelf/subtidal zone to the 10 m contour and include fluvial environments because of the probability of marine inundation of freshwater zones. Field validation was done as each desktop mapping section was near completion. This map has innovatively incorporated anthropogenic structures as geomorphological features because we are concerned with the present and future geomorphic function rather than the past. Upon completion it will form part of the National Coastal Geomorphic Map of Australia, also being developed by Geoscience Australia and utilized in conjunction with Smartline.

  • This report describes the investigations into the coastal creek system conducted within the Fitzroy agricultural contaminants project. Before this work started there had been only a limited data acquisition on the water quality parameters in several of the coastal creeks carried out by the Queensland Environmental Protection Agency (EPA). These data are a valuable augmentation to the data collected under Coastal CRC auspices. We briefly outline the consolidated dataset, draw qualitative conclusions from it, and develop a conceptual model reflecting the interacting processes. These analyses are then the starting point for the development of a quantitative characterisation of the role of the coastal creeks in the biogeochemistry of Keppel Bay.

  • There is growing global concern for the impact of increased fluvial sediment loads on tropical coral reefs and seagrass ecosystems. The Fitzroy River is a macrotidal, tide-dominated estuary in the dry tropics of central Queensland and is a major contributor of sediment to the southern Great Barrier Reef (GBR) lagoon. The estuary currently receives most of its sediment during large episodic flood events commonly associated with cyclonic depressions. The sediment dynamics of macrotidal estuaries and especially of wet-dry tropical systems, with intermittent flows and sediment discharge are poorly understood. Average annual sediment budgets for such a system are also difficult to estimate due to the sporadic nature of flood discharge events. Therefore we have estimated a long-term sediment accumulation rate of catchment-derived sediment trapped in the estuary using the Holocene stratigraphic sequence, determined from a series of sediment cores, dated with radiocarbon and optically stimulated luminescence (OSL), and integrated with industry borehole data. We estimate that 17,400 million tonnes (Mt) of river sediment has accumulated in the estuary during the last 8000 years. This suggests a minimum mean annual bulk sediment discharge of the Fitzroy River of 2000 kt yr-1. This estimated 2175 kilotonnes per year (kt yr-1) of bulk sediment is equivalent to 25% of the estimated average annual modern bulk sediment discharge of the Fitzroy River of 8800 kt yr-1, (Kelly and Wong, 1996) suggesting that the sediment trapping efficiency of the Fitzroy estuary during the Holocene has been approximately 25%. This implies that 75% of the river sediment has been exported from the estuary into Keppel Bay and the adjacent GBR lagoon during the Holocene. With minimal accommodation space left in the floodplain, modern sediment accumulation appears to be focussed around the mangroves and tidal creeks, which cover an area of 130 km2. Cores from the tidal creeks were dated using 137Cs, excess 210Pb, and OSL and display sedimentation rates of approximately 1.5 cm yr-1 for the last 45-120 years, or 1700 kt yr-1, and suggest a modern sediment trapping efficiency for the estuary of around 19%. These results provide useful insights into the long-term sedimentation and quantification of the sediment trapping efficiency of a subtropical macro-tidal estuary with episodic floods, where sediment trapping will vary seasonally and inter-annually.