From 1 - 10 / 1021
  • This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.

  • This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.

  • This GIS data package contains airborne electromagnetic (AEM) datasets and interpreted data products for the Robinvale-Boundary Bend survey area, as part of the River Murray Corridor (RMC) Salinity Mapping and Interpretation Project. The RMC project was undertaken between 2006 and 2010 to provide information on a range of salinity and land management issues along a 450 kilometre reach of the Murray River from the South Australian border to Gunbower, northwest of Echuca in Victoria. The Robinvale-Boundary Bend survey area extends from Robinvale to the north of Wakool junction. This metadata briefly describes the contents of the data package. The user guide included in the package contains more detailed information about the individual datasets and available technical reports. The main components in the package are: AEM data and images derived from a holistic inversion of the RMC RESOLVE AEM survey; a composite digital elevation model (DEM); a range of interpreted data products designed to map key elements of the hydrogeological system and salinity hazards using the AEM dataset; and a series of ESRI ArcGIS map documents. The AEM data component consists of grids and images of modelled conductivity data derived from a holistic inversion of the RMC RESOLVE AEM survey. They include: layer conductivity grids below ground surface; depth slice grids representing the average conductivity of various regular depth intervals below ground surface; floodplain slice grids representing the average conductivity of various depth intervals relative to the elevation above or below a surface that approximates the River Murray floodplain; watertable slice grids representing the average conductivity of various intervals relative to the elevation above or below the regional watertable; and AEM cross sections of conductivity versus depth along each of the flight lines. The holistic inversion AEM data are derived from the 'River Murray Corridor RESOLVE AEM Survey, VIC & NSW, 2007 Final Data (P1141)', available as Geoscience Australia product number 67212 (GeoCat #67212). The DEM data component consists of a 10 metre horizontal resolution composite DEM for the River Murray Corridor AEM survey area derived from airborne light detection and ranging (LiDAR) surveys, AEM surveys and the shuttle radar topography mission (SRTM) survey. The interpreted data component is organised into product themes to: address salinity and land management questions; and to map key elements of the hydrogeological system and salinity hazards. An ArcGIS map document is included for each product theme. The products include: Blanchetown Clay; conductive soils; flush zones; groundwater conductivity; stratigraphic extents and reliability; near surface conductive zones; near surface resistive zones; Parilla Sands; Quaternary alluvium; recharge; salt store; surface salt; vegetation health; and Woorinen Formation. The RMC project was funded through the National Action Plan for Salinity and Water Quality with additional funding from the Lower Murray Catchment Management Authority (CMA), Mallee CMA, Goulburn-Murray Water and the Murray-Darling Basin Authority. The project was administered by the Australian Government Department of Agriculture, Fisheries and Forestry through the Bureau of Rural Sciences, now known as the Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES). Geoscience Australia (GA) were contracted to provide geophysical services to manage the AEM system selection and data acquisition, and to process and calibrate the AEM data. The AEM survey was flown by Fugro Airborne Geophysical Services in 2007 using the helicopter-borne RESOLVE frequency domain system. The Cooperative Research Centre for Landscape Environments and Mineral Exploration was sub-contracted through GA to manage the interpretation and reporting component of the RMC project.

  • This GIS data package contains airborne electromagnetic (AEM) datasets and interpreted data products for the Liparoo-Robinvale survey area, as part of the River Murray Corridor (RMC) Salinity Mapping and Interpretation Project. The RMC project was undertaken between 2006 and 2010 to provide information on a range of salinity and land management issues along a 450 kilometre reach of the Murray River from the South Australian border to Gunbower, northwest of Echuca in Victoria. The Liparoo-Robinvale survey area extends from Liparoo in a north-easterly direction to Robinvale. This metadata briefly describes the contents of the data package. The user guide included in the package contains more detailed information about the individual datasets and available technical reports. The main components in the package are: AEM data and images derived from a holistic inversion of the RMC RESOLVE AEM survey; a composite digital elevation model (DEM); a range of interpreted data products designed to map key elements of the hydrogeological system and salinity hazards using the AEM dataset; and a series of ESRI ArcGIS map documents. The AEM data component consists of grids and images of modelled conductivity data derived from a holistic inversion of the RMC RESOLVE AEM survey. They include: layer conductivity grids below ground surface; depth slice grids representing the average conductivity of various regular depth intervals below ground surface; floodplain slice grids representing the average conductivity of various depth intervals relative to the elevation above or below a surface that approximates the River Murray floodplain; watertable slice grids representing the average conductivity of various intervals relative to the elevation above or below the regional watertable; and AEM cross sections of conductivity versus depth along each of the flight lines. The holistic inversion AEM data are derived from the 'River Murray Corridor RESOLVE AEM Survey, VIC & NSW, 2007 Final Data (P1141)', available as Geoscience Australia product number 67212 (GeoCat #67212). The DEM data component consists of a 10 metre horizontal resolution composite DEM for the River Murray Corridor AEM survey area derived from airborne light detection and ranging (LiDAR) surveys, AEM surveys, and the shuttle radar topography mission (SRTM) survey. The interpreted data component is organised into product themes to address salinity and land management questions and to map key elements of the hydrogeological system and salinity hazards. An ArcGIS map document is included for each product theme. The products include: Blanchetown Clay; conductive soils; flush zones; groundwater conductivity; stratigraphic unit extents and reliability; near surface conductive zones; near surface resistive zones; Parilla Sands; Quaternary alluvium; recharge; salt store; surface salt; vegetation health; and Woorinen Formation. The RMC project was funded through the National Action Plan for Salinity and Water Quality with additional funding from the Lower Murray Catchment Management Authority (CMA), Mallee CMA, Goulburn-Murray Water and the Murray-Darling Basin Authority. The project was administered by the Australian Government Department of Agriculture, Fisheries and Forestry through the Bureau of Rural Sciences, now known as the Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES). Geoscience Australia (GA) were contracted to provide geophysical services to manage the AEM system selection and data acquisition, and to process and calibrate the AEM data. The AEM survey was flown by Fugro Airborne Geophysical Services in 2007 using the helicopter-borne RESOLVE frequency domain system. The Cooperative Research Centre for Landscape Environments and Mineral Exploration was sub-contracted through GA to manage the interpretation and reporting component of the RMC project.

  • This digital data package comprises all available 1:100 000 scale first edition and unpublished preliminary geological maps of the Mount Isa Inlier, Murphy Tectonic Ridge, South Nicholson Basin and southern McArthur Basin. It also includes parts of the Mount Drummond and Lawn Hill 1:250 000 sheets which have not been mapped at 1:100 000 scale. The complete data set covers 19 full, 5 combined and 4 part 100,000 scale map sheets. All faults within this area have been coded uniquely to facilitate metallogenic analysis. The data, currently version 2.1, can be downloaded and comprises either MapInfo or Arcinfo/Arcview formats. For Arcview, unique legends have been created for the geology layers of each individual dataset, uniform across the whole of the Mount Isa dataset.

  • This digital data package comprises all available 1:100 000 scale first edition and unpublished preliminary geological maps of the Mount Isa Inlier, Murphy Tectonic Ridge, South Nicholson Basin and southern McArthur Basin. It also includes parts of the Mount Drummond and Lawn Hill 1:250 000 sheets which have not been mapped at 1:100 000 scale. The complete data set covers 19 full, 5 combined and 4 part 100,000 scale map sheets. All faults within this area have been coded uniquely to facilitate metallogenic analysis. The data, currently version 2.1, can be downloaded and comprises either MapInfo or Arcinfo/Arcview formats. For Arcview, unique legends have been created for the geology layers of each individual dataset, uniform across the whole of the Mount Isa dataset.

  • This document provides supporting information to assist in the use of the Australian Mafic-Ultramafic Magmatic Events GIS Dataset. The dataset is made publicly available as a GIS at nominal 1:5 000 000 scale, and shows the time-space-event distribution of mafic-ultramafic magmatism in Australia from the early Archean to the present day. Development of this GIS has been a multi-year project and earlier released extracts (in viewable pdf form with accompanying Geoscience Australia Records) included compilations for the Archean magmatic record, the Proterozoic magmatic record, and the Australian Large Igneous Provinces (LIPs). Publication of the GIS completes the series with addition of the Phanerozoic magmatic record, and formalisation of the complete record of Archean-Phanerozoic magmatic events as a single series. The chronology of Australian mafic-ultramafic magmatism resolves into 74 magmatic events within, predominately, resolvable bands of ±10 million years. Each event is identified by geological units grouped by similar age - this coeval magmatism may or may not be genetically related and may be in response to different geodynamic environments. These magmatic events range in age from the Eoarchean ~3730 Ma ME 1 - Manfred Event, confined within a small remnant domain within the Yilgarn Craton, to the widespread record of Cenozoic magmatism in eastern Australia (ME 72 to ME 74). The magmatic events range in magnitude from the giant volumes of magma in Large Igneous Provinces, to events whose only known occurrence is an isolated record of dated mafic igneous rock in a single drillhole. The GIS makes it possible to focus on the location of any one of these magmatic events, or groups of magmatic events that may be of interest, and overlay context from any other information that users may have available. The delineation of magmatic events for this study is based on several hundred published ages of mafic and ultramafic igneous rocks from different isotopic systems and minerals. In addition to their ages and extents, primary recorded aspects of each magmatic event include the presence or absence of ultramafic components. Further to this, the presence or correlation of known magmatic-related mineralisation is highlighted in Time-Space-Event Charts of Australia (Appendix D, figures D1 and D2). The basis for mapping has been regional solid geology, interpreted basement geology and surface geology base maps made available by the State and Northern Territory geological surveys, providing insight into the total areal extent of the magmatic systems under cover. Also available to complement the Event GIS are the domains and element boundaries from the Australian Crustal Elements map. These boundaries which are which are based on geophysical extrapolation of crustal elements under the cover of continental basins, provide a framework of the shallow crustal structure of the continent, and are used in this guide. The Crustal Elements digital dataset is available for download from the Geoscience Australia website. Insight into the geodynamic development of the continent is provided by the magmatic event structure through time. The compilation draws attention to concentrations of mafic-ultramafic magmatism in the Archean from ~2820-2665 Ma, in the Proterozoic from ~1870-1590 Ma, and in the late Neoproterozoic-Phanerozoic from ~530-225 Ma. These three time spans contain 39 of the 74 magmatic events, 53% of the entire mafic-ultramafic magmatic event record of the continent. The periods in between have mafic-ultramafic magmatic records that are more dispersed in time. Other features of interest include the shared geographic and crustal element locations of Large Igneous Provinces and numerous events with smaller magma volumes. Read the rest of the Executive Summary in the document.

  • This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.

  • This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.

  • This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.