From 1 - 10 / 200
  • A key component of Geoscience Australia's marine program involves developing products that contain spatial information about the seabed for Australia's marine jurisdiction. This spatial information is derived from sparse or unevenly distributed samples collected over a number of years using many different sampling methods. Spatial interpolation methods are used for generating spatially continuous information from the point samples. These methods are, however, often data- or even variable- specific and it is difficult to select an appropriate method for any given dataset. Machine learning methods, like random forest (RF) and support vector machine (SVM), have proven to be among the most accurate methods in disciplines such as bioinformatics and terrestrial ecology. However, they have been rarely previously applied to the spatial interpolation of environmental variables using point samples. To improve the accuracy of spatial interpolations to better represent the seabed environment for a variety of applications, including prediction of biodiversity and surrogacy research, Geoscience Australia has conducted two simulation experiments to compare the performance of 14 mathematical and statistical methods to predict seabed mud content for three regions (i.e., Southwest, North, Northeast) of Australia's marine jurisdiction Since 2008. This study confirms the effectiveness of applying machine learning methods to spatial data interpolation, especially in combination with OK or IDS, and also confirms the effectiveness of averaging the predictions of these combined methods. Moreover, an alternative source of methods for spatial interpolation of both marine and terrestrial environmental properties using point survey samples has been identified, with associated improvements in accuracy over commonly used methods.

  • The development of climate change adaptation policies must be underpinned by a sound understanding of climate change risk. As part of the Hyogo Framework for Action, governments have agreed to incorporate climate change adaptation into the risk reduction process. This paper explores the nature of climate change risk assessment in the context of human assets and the built environment. More specifically, the paper's focus is on the role of spatial data which is fundamental to the analysis. The fundamental link in all of these examples is the National Exposure Information System (NEXIS) which has been developed as a national database of Australia's built infrastructure and associated demographic information. The first illustrations of the use of NEXIS are through post-disaster impact assessments of a recent flood and bushfire. While these specific events can not be said to be the result of climate change, flood and bushfire risks will certainly increase if rainfall or drought become more prevalent, as most climate change models indicate. The second example is from Australia's National Coastal Vulnerability Assessment which is addressing the impact of sea-level rise and increased storms on coastal communities on a national scale. This study required access to or the development of several other spatial databases covering coastal landforms, digital elevation models and tidal/storm surge. Together, these examples serve to illustrate the importance of spatial data to the assessment of climate change risk and, ultimately, to making informed, cost-effective decisions to adapt to climate change.

  • A new continental-scale geochemical atlas and dataset were officially released into the public domain at the end of June 2011. The National Geochemical Survey of Australia (NGSA) project, which started in 2007 under the Australian Government's Onshore Energy Security Program at Geoscience Australia, aimed at filling a huge knowledge gap relating to the geochemical composition of surface and near-surface materials in Australia. Better understanding the concentration levels and spatial distributions of chemical elements in the regolith has profound implications for energy and mineral exploration, as well as for natural resource management. In this world first project, a uniform regolith medium was sampled at an ultra-low density over nearly the entire continent, and subsamples from two depths and two grain-size fractions were analysed using up to three different (total, strong and weak) chemical digestions. This procedure yielded an internally consistent and comprehensive geochemical dataset for 68 chemical elements (plus additional bulk properties). From its inception, the emphasis of the project has been on quality control and documentation of procedures and results, and this has resulted in eight reports (including an atlas containing over 500 geochemical maps) and a large geochemical dataset representing the significant deliverables of this ambitious and innovative project. The NGSA project was carried out in collaboration with the geoscience agencies from every State and the Northern Territory under National Geoscience Agreements. .../...

  • Hydrogeological assessment of the Maryborough Basin, submitted as an abstract for the 2013 IAH Congress.

  • Geoscience Australia and CO2CRC have constructed a greenhouse gas controlled release reference facility to simulate surface emissions of CO2 (and other GHG gases) from an underground slotted horizontal well into the atmosphere under controlled conditions. The facility is located at an experimental agricultural station maintained by CSIRO Plant Industry at Ginninderra, Canberra. The design of the facility is modelled on the ZERT controlled release facility in Montana. The facility is equipped with a 2.5 tonne liquid CO2 storage vessel, vaporiser and mass flow controller unit with a capacity for 6 individual metered CO2 gas streams (up to 600 kg/d capacity). Injection of CO2 into soil is via a shallow (2m depth) underground 120m horizontally drilled slotted HDPE pipe. This is equipped with a packer system to partition the well into six CO2 injection chambers. The site is characterised by the presence of deep red and yellow podsolic soils with the subsoil containing mainly kaolinite and subdominant illite. Injection is above the water table. The choice of well orientation based upon the effects of various factors such as topography, wind direction, soil properties and ground water depth will be discussed. An above ground release experiment was conducted from July - October 2010 leading to the development of an atmospheric tomography technique for quantifying and locating CO2 emissions1. This technique will be applied to the first sub-surface experiment held in January-March 2012 in addition to soil flux surveys, microbiological surveys, and tracer studies. An overview of monitoring experiments conducted during the subsurface release and preliminary results will be presented. Additional CO2 releases are planned for late 2012 and 2013. Abstract for "11th Annual Conference on Carbon Capture Utilization & Sequestration" April 30 - May 3, 2012, Pittsburgh, Pennsylvania

  • From 1995 to 2000 information from the federal and state governments was compiled for Comprehensive Regional Assessments (CRA), which formed the basis for Regional Forest Agreements (RFA) that identified areas for conservation to meet targets agreed by the Commonwealth Government with the United Nations. These 3 CDs were created as part of GA's contribution to the Tasmania CRA. CD1 contains final versions of all data coverages and shapefiles used in the project, and final versions of documents provided for publishing. CD2 contains Published Graphics files in ArcInfo (.gra), postscript (.ps) and Web ready (.gif) formats. CD3 contains all Geophysical Images and Landsat data.

  • The National Geochemical Survey of Australia (NGSA) project (www.ga.gov.au/ngsa) was part of Geoscience Australia's Onshore Energy Security Program 2006-2011 and was carried out in collaboration with the geological surveys of all States and the Northern Territory. It delivered (1) Australia's first national geochemical atlas, (2) an underpinning geochemical database, and (3) a series of reports. Catchment outlet sediments (similar to floodplain sediments in most cases) were sampled in 1186 catchments covering ~80% of the country (average sample density 1 sample per 5500 km2). Samples were collected at 2 depths each sieved to 2 grain size fractions. Chemical analyses carried out on the samples fall into 3 main categories: (1) total (using mainly XRF and total digestion ICP-MS), (2) aqua regia, and (3) Mobile Metal Ion® (MMI) element contents. The MMI analyses were conducted on the surface (0-10 cm) samples sieved to <2 mm, in one single batch, by ICP-MS. Concentrations of 54 elements (Ag, Al, As, Au, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Hg, K, La, Li, Mg, Mn, Mo, Nb, Nd, Ni, P, Pb, Pd, Pr, Pt, Rb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, U, V, W, Y, Yb, Zn and Zr) were determined. Maps and quality assessment of these data are presented in reports available from the project website. Preliminary interpretations of the MMI dataset suggest that it potentially has significant value in geological, mineral exploration and agronomic (e.g., bioavailability) applications.

  • Analytical data for 10 major oxides (Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2 and TiO2), 16 total trace elements (As, Ba, Ce, Co, Cr, Ga, Nb, Ni, Pb, Rb, Sr, Th, V, Y, Zn and Zr), 14 aqua regia extractable elements (Ag, As, Bi, Cd, Ce, Co, Cs, Cu, Fe, La, Li, Mn, Mo and Pb), Loss On Ignition (LOI) and pH from >3500 soil samples from two continents (Australia and Europe) are presented and compared to (1) the composition of the upper crust, (2) published world soil average values, and (3) data from other continental-scale soil surveys. It is demonstrated that average upper continental crust values do not provide reliable estimates for natural concentrations of elements in soils. For many elements there exist substantial differences between published world soil averages and the median concentrations observed on two continents. Direct comparison with other continental datasets is hampered by the fact that often mean, instead of the statistically more correct median, is reported. Using a database of the worldwide distribution of lithological units, it can be demonstrated that lithology is a poor predictor of soil chemistry. Climate-related processes such as glaciation and weathering are strong modifiers of the geochemical signature inherited from bedrock during pedogenesis. To overcome existing shortcomings of predicted global or world soil geochemical reference values, we propose Preliminary Empirical Global Soil reference values based on analytical results of a representative number of soil samples from two continents (PEGS2).

  • Geoscience Australia and the CO2CRC have constructed a greenhouse gas controlled release facility at an experimental agricultural station maintained by CSIRO Plant Industry at Ginninderra, Canberra. The facility is designed to simulate surface emissions of CO2 (and other greenhouse gases) from the soil into the atmosphere. CO2 is injected into the soil is via a 120m long slotted HDPE pipe installed horizontally 2m underground. This is fitted with a straddle packer system to partition the well into six CO2 injection chambers with each chamber connected to its own CO2 injection line. CO2 was injected into 5 of the chambers during the first sub-surface release experiment (March - May 2012) and the total daily injection rate was 100 kg/d. A krypton tracer was injected into one of the 5 chambers at a rate of 10 mL/min. Monitoring methods trialled at the site include eddy covariance, atmospheric tomography using a wireless networked array of solar powered CO2 stations, soil flux, soil gas, frequency-domain electromagnetics (FDEM), soil community DNA analysis, and krypton tracer studies (soil gas and air). A summary of the findings will be presented. Paper presented at the 2012 CO2CRC Research Symposium, Sunshine Beach, 27-29 November 2012.

  • The world's first satellite-derived mineral maps of a continent, namely Australia, are now publicly available as digital, web-accessible products. The value of this spatially comprehensive mineral information is readily being captured by explorers at terrane to prospect scales. However, potentially even greater benefits can ensue for environmental applications, especially for the Earth's extensive drylands which generate nearly 50% of the world's agricultural production but are most at risk to climate change and poor land management. Here we show how these satellite mineral maps can be used to: characterise soil types; define the extent of deserts; fingerprint sources of dust; measure the REDOX of iron minerals as a potential marine input; and monitor the process of desertification. We propose a 'Mineral Desertification Index' that can be applied to all Earth's drylands where the agriculturally productive clay mineral component is being lost by erosion. Mineral information is fundamental to understanding geology and is important for resource applications1. Minerals are also a fundamental component of soils2 as well as dust eroded from the land surface, which can potentially impact on human health3, the marine environment4 and climate5. Importantly, minerals are well exposed in the world's 'drylands', which account for nearly 50% of Earth's land area6. Here, vegetation cover is sparse to non-existent as a result of low rainfall (P) and high evaporation (E) rates (P/E<0.65). However, drylands support 50% of the world's livestock production and almost half of all cultivated systems6. In Australia, drylands cover 85% of the continent and account for 50% of its beef, 80% of its sheep and 93% of its grain production7. Like other parts of the world, Australia is facing serious desertification of its drylands6. Wind, overgrazing and overstocking are major factors in the desertification process8. That is, the agriculturally productive clay-size fraction of soils (often includes organic carbon) is lost largely through wind erosion, which is acerbated by the loss of any vegetative groundcover (typically dry plant materials). Once clay (and carbon) loss begins, then the related break down of the soil structure and loss of its water holding capacity increases the rate of the degeneration process with the final end products being either exposed rock or quartz sands that often concentrate in deserts.