Authors / CoAuthors
Przeslawski, R. | Carroll, A.G. | Edmunds, M. | Williams, S.
Abstract
Fisheries groups worldwide are concerned that seismic operations negatively affect catch rates within a given area, although there is a lack of field-based scientific evidence. In southeast Australia, marine seismic surveys have been blamed for mass mortalities of benthic invertebrates including the commercial scallop Pecten fumatus. Geoscience Australia conducted a 2-D seismic survey in this region in April 2015, thereby presenting an opportunity to conduct field-based experiments investigating the potential impacts on marine organisms. Moored hydrophones recorded noise before and during the seismic survey. An Autonomous Underwater Vehicle (AUV) was used to evaluate the effectiveness of seafloor images to support scallop monitoring. In addition, more traditional sampling was undertaken using a commercial scallop dredge from which a variety of biological and biochemical variables were analysed. The AUVs and dredge were deployed at three time periods (before the seismic survey, 2 months after seismic operations ceased, 10 months after seismic operations ceased), although poor-quality AUV images acquired before the survey precluded the analysis of these data. The highest sound exposure level recorded by the hydrophones was 146 dB re 1 µPa2s at 51 m water depth, at a distance of 1.4 km from the airguns. Commercial scallops were not abundant in the study area, and analysis of AUV images revealed no differences in commercial scallop types (live, clapper, dead shell, other) between experimental and control zones. Similarly, analysis of dredged scallops shows no detectable impact due to seismic activity on shell size, meat size and condition, gonad size and condition, and biochemical indices. Both AUV and dredging data showed strong spatial patterns, with significant differences between sites. Our study confirms previous work showing no evidence of immediate mortality on scallops in the field, and it expands this to include no evidence of long-term or sub-lethal effects. Negative impacts are currently confined to laboratory settings with unrealistic sound exposures. If short-term effects are investigated, we recommend a focus on the underlying mechanisms of potential impacts (i.e. physiological responses), rather than gross metrics such as mortality or size. Physiological responses to airgun sound may not be as immediately obvious as mortality or behavioural responses, but they are equally important to provide early indications of negative effects, as well as to explain the underlying mechanisms behind mortality events and reduced catch.
Product Type
nonGeographicDataset
eCat Id
90004
Contact for the resource
Custodian
Owner
Custodian
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
-
- External Publication
- ( Theme )
-
- Marine
- ( Theme )
-
- environmental
- ( Theme )
-
- seabed
- ( Theme )
-
- seismics
- ( Theme )
-
- habitat
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Earth Sciences
-
- Published_Internal
Publication Date
2016-01-01T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
asNeeded
Topic Category
oceans
Series Information
Lineage
Unknown
Parent Information
Extents
Reference System
Spatial Resolution
Service Information
Associations
Downloads and Links
Source Information
Source data not available.