From 1 - 10 / 224
  • Predictive maps of the subsurface can be generated when geophysical datasets are modelled in 2D and 3D using available geological knowledge. Inversion is a process that identifies candidate models which explain an observed dataset. Gravity, magnetic, and electromagnetic datasets can now be inverted routinely to derive plausible density, magnetic susceptibility, or conductivity models of the subsurface. The biggest challenge for such modelling is that any geophysical dataset may result from an infinite number of mathematically-plausible models, however, only a very small number of those models are also geologically plausible. It is critical to include all available geological knowledge in the inversion process to ensure only geologically plausible physical property models are recovered. Once a set of reasonable physical property models are obtained, knowledge of the physical properties of the expected rocks and minerals can be used to classify the recovered physical models into predictive lithological and mineralogical models. These predicted 2D and 3D maps can be generated at any scale, for Government-funded precompetitive mapping or drilling targets delineation for explorers.

  • Identification of groundwater-dependent (terrestrial) vegetation, and assessment of the relative importance of different water sources to vegetation dynamics commonly involves detailed ecophysiological studies over a number of seasons or years. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Consequently, quicker, more regional mapping approaches have been developed. These new approaches utilise advances in computation geoscience, and remote sensing and airborne geophysical technologies. This study, undertaken in the semi-arid Darling River Floodplain in N.S.W., Australia, combines Landsat Normalised Difference Vegetation Index (NDVI) time series data with hydrogeological, hydrogeochemical and hydrogeophysical data to assess the relative importance of hydrological processes and groundwater characteristics. The first stage in the study combined high-resolution vegetation structural mapping derived from LiDAR data (Canopy Digital Elevation Model and Foliage Projected Cover), with 23 years of Landsat time-series data. Statistical summaries of Normalised Difference Vegetation Index values were generated for each spatially continuous vegetation structural class for each Landsat scene (e.g. stand of closed forest). This has enabled long-term temporal changes in vegetation condition to be assessed against different water regimes (drought, local rainfall, river bank full, overbank flow, and lake filling), and groundwater dependent vegetation to be identified. The second stage involved integration with airborne electromagnetics (AEM), hydrogeology and hydrogeochemistry. This has shown that the deeper (>25m), semi-confined aquifer is only rarely important to vegetation dynamics, with the shallow unconfined aquifer and river lateral bank recharge zones being of greater importance.

  • Broken Hill Managed Aquifer recharge Projects 3D models and Fly-through

  • The 'River Murray Corridor (RMC) Salinity Mapping Project', provides important new information in relation to salinity hazard and management along in a 20 km-wide swath along a 450 km reach of the River Murray. The project area contains iconic wetlands, national and state forest parks, irrigation and dryland farming assets and the Murray River, significant areas of which are at risk from increasing salinisation of the River, the floodplain, and underlying groundwater resources. The project utilised a hydrogeological systems approach to integrate and analyse data obtained from a large regional airborne electromagnetic (AEM) survey (24,000 line km @ 150m line-spacing in a 20 km-wide swath along the Murray River), field mapping, and lithological and hydrogeochemical data obtained from drilling. New holistic inversions of the AEM data have been used to map key elements of the hydrogeological system and salinity extent in the shallow sub-surface (top 20-50 m). The Murray River is known to display great complexity in surface-groundwater interactions along its course. Electrical geophysical methods (such as AEM) are able to map surface-groundwater interaction due to the contrast between (electrically resistive) fresh water in the river, and (electrically conductive) brackish to saline groundwater in adjacent sediments. The location of significant river flush zones is influenced both by underlying geology and the location of locks, weirs and irrigation districts. The study has also identified significant areas of high salinity hazard in the floodplain and river, and quantified the salt store and salt load across the floodplain. The study has also identified sub-surface factors (including saline groundwater, shrinking flush zones, declining water tables) linked to vegetation health declines.

  • An integrated multi-scale approach has been used to map and assess shallow (<100m) aquitards in unconsolidated alluvial sediments beneath the Darling River floodplain. The study integrated a regional-scale (7,500km2) airborne electromagnetics (AEM) survey with targeted ground electrical surveys, downhole lithological and geophysical (induction, gamma and nuclear magnetic resonance (NMR)) logging, hydraulic testing and hydrogeochemistry obtained from a 100 borehole (7.5km) sonic and rotary drilling program. Electrical conductivity mapping confirmed a relatively continuous lacustrine Blanchetown Clay aquitard, mostly below the water table. The Blanchetown Clay is typically 5-10m thick with a maximum thickness of 18m but, importantly, can also be absent. Variations (up to 60m) in the elevation of the aquitard top surface are attributed partly to neotectonics, including warping, discrete fault offsets, and regional tilting. Hydrograph responses in overlying and underlying aquifers, laboratory permeameter measurements on cores, and hydrogeochemical data demonstrate where the Blanchetown Clay acts as an effective aquitard. In these areas, the AEM and induction logs can show an electrical conductivity (EC) decrease towards the centre of the clay rich aquitard, contrary to the typical response of saturated clays. Even though the aquitard centre is below the watertable, core moisture data and NMR total water logs indicate very low water content, explaining the relatively low EC response. The NMR logs also indicate that the clay aquitard is partially saturated both from the top and the bottom. This suggests very low hydraulic conductivities for the aquitard resulting in negligible vertical leakage in these areas. This is supported by core permeameter measurements of less than 10-12 m/s.

  • Under the Community Stream Sampling and Salinity Mapping Project, the Australian Government through the Department of Agriculture, Fisheries and Forestry and the Department of Environment and Heritage, acting through Bureau of Rural Sciences, funded an airborne electromagnetic (AEM) survey to provide information in relation to land use questions in selected areas along the River Murray Corridor (RMC). The proposed study areas and major land use issues were identified by the RMC Reference Group at its inception meeting on 26th July, 2006. This report has been prepared to facilitate recommendations on the Barr Creek - Gunbower study area. The work was developed in consultation with the RMC Technical Working Group (TWG) to provide a basis for the RMC Reference Group and other stake holders to understand the value and application of AEM data to the study area. This understanding, combined with the Reference Groups assessment of the final results and taking in account policy and land management issues, will enable the Reference Group to make recommendations to the Australian Government.

  • Geoscience Australia is a proscribed agency of the Australian Government, and has been acquiring precompetitive geophysics over the Australian continent and making it available to industry and researchers for over fifty years. Geophysical methods are especially important for effective exploration in Australia because the ancient landscape has been deeply weathered and fresh rocks are concealed beneath a thick layer of weathered material, referred to as regolith. The Onshore Energy Security Program is Geoscience Australia's latest precompetitive program and is designed to reduce risk in exploration for Australia's onshore hydrocarbon, uranium, thorium, and geothermal energy resources. The program will acquire and deliver pre-competitive geophysical and geochemical data as well as geological interpretations and other value-added products for the exploration industry.

  • Airborne Electromagnetic data are being acquired by Geoscience Australia in areas considered to have potential for uranium or thorium mineralisation under the Australian Government's Onshore Energy Security Program (OESP). The surveys have been managed and interpreted by Geoscience Australia's Airborne Electromagnetic Acquisition and Interpretation project. In contrast to industry style deposit scale investigations, these surveys are designed to reveal new geological information at regional scale. The Paterson airborne electromagnetic data were acquired at line spacings of between one and six kilometres, a total of 28 200 line km and covers an area of 47 600 km<sup>2</sup>. The outcomes of the Paterson AEM survey include mapping of subsurface geological features that are associated with unconformity-related, sandstone-hosted and palaeovalley-hosted uranium mineralisation. The data are also capable of interpretation for other commodities including metals and potable water as well as for landscape evolution studies. The improved understanding of the regional geology resulting from the Paterson survey results will be of considerable benefit to mining and mineral exploration companies. This Data Package is for Archive to the internal area of the CDS and contains all data, grids, images, mxd, shape files, documentation, licenses, agreements, interpretations and scripts used to create the Paterson deliverables. At the projects completion (2012) all directories are required to be moved off the NAS. The reason to keep all the files is that more work is to be done on this data in the 2012-2015 period and these files may be needed in this future work.

  • Under the Community Stream Sampling and Salinity Mapping Project, the Australian Government through the Department of Agriculture, Fisheries and Forestry and the Department of Environment and Heritage, acting through Bureau of Rural Sciences, funded an airborne electromagnetic (AEM) survey to provide information in relation to land use questions in selected areas along the River Murray Corridor (RMC). The proposed study areas and major land use issues were identified by the RMC Reference Group at its inception meeting on 26th July, 2006. This report has been prepared to facilitate recommendations on the Lindsay-Walppolla study area. The work was developed in consultation with the RMC Technical Working Group (TWG) to provide a basis for the RMC Reference Group and other stake holders to understand the value and application of AEM data to the study area. This understanding, combined with the Reference Group's assessment of the final results and taking in account policy and land management issues, will enable the Reference Group to make recommendations to the Australian Government. The report is based on an assessment the application of AEM to the Reference Group's land management issues as specified by the TWG at its meeting on 16th August 2006 and out of session.

  • A brief summary fo the highlights of the Paterson AEM survey and planned future work of Geoscience Australia's Airborne EM Project.