From 1 - 10 / 286
  • The Great Artesian Basin Water Resource Assessment involves a basin-scale investigation of water resources to fill knowledge gaps about the status of water resources in the basin and the potential impacts of climate change and resource development. This report addresses findings in the Carpentaria region. Citation: Smerdon BD, Welsh WD and Ransley TR (eds) (2012) Water resource assessment for the Carpentaria region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia.

  • The Great Artesian Basin Water Resource Assessment involves a basin-scale investigation of water resources to fill knowledge gaps about the status of water resources in the basin and the potential impacts of climate change and resource development. This report addresses findings in the Western Eromanga region. Citation: Smerdon BD, Welsh WD and Ransley TR (eds) (2012) Water resource assessment for the Western Eromanga region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia

  • Modelled groundwater levels from 2010 to 2070 used to estimate the impact of climate change and future groundwater resource development on groundwater levels in the GAB. The modelling considered different scenarios of climate and groundwater development: Scenario A (historical climate and current development); Scenario C (future climate and current development) and Scenario D (future climate and future development). The future climate scenarios included the wet extreme (wet), the median (mid) and the dry extreme (dry). The raster grids "Cdry.grd"", "Cmid.grd" and "Cwet.grd" show predicted hydraulic head for the year 2070 based on projections of future climate and the continuation of current rates of groundwater extraction The files "Cdry-Base.grd", "Cmid-Base.grd" and ""Cwet-Base.grd" represent predicted differences between the hydraulic heads produced by Scenario C at 2070, and the modelled spatial distributions of hydraulic head for the year 2010 (Base scenario). The files "Cdry-A.grd", "Cmid-A.grd" and "Cwet-A.grd" represent predicted differences between hydraulic heads for 2070 produced by Scenario C and the current climate and development scenario (Scenario A). 'No data' value is 1e30 Cell size is 5000m x 5000m This data and metadata were produced by CSIRO for the Great Artesian Basin Water Resource Assessment. For more information, please refer to Welsh WD, Moore CR, Turnadge CJ, Smith AJ and Barr TM (2012), "Modelling of climate and groundwater development. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment ". CSIRO Water for a Healthy Country Flagship, Australia. Projection is Albers equal area conic, with central meridian 143 degrees longitude, standard parallels at -21 and -29 degrees latitude and latitude of projection's origin at -25.

  • Layer 08B Base of Poolowanna Formation Surface produced for the Great Artesian Water Resource Assessment (GABWRA) by Geoscience Australia (http://www.ga.gov.au). This surface was created for 3D visualisation of the Base of Poolowanna Formation . The surface is available in the following formats 1. GOCAD surface (.ts) 2. ESRI grid 3. ASCII grid (.grd) Use limitations: 1. GOCAD surface requires program capable of reading GOCAD *.ts (triangulated surface) files 2. ASCII grid data requires re-interpolation by end-user resulting in minor differences to accompanying GOCAD *.ts surface This layer is part of a set comprised of: Layer 01 3-second Digital Elevation Model surface (catalogue #75990) Layer 02 Base of Cenozoic surface (catalogue #75991) Layer 03 Base of Mackunda Formation and equivalents surface (catalogue #76021) Layer 04 Base of Rolling Downs Group surface (catalogue #76022) Layer 05 Base of Hooray Sandstone and equivalents surface (catalogue #76023) Layer 06 Base of Injune Creek Group surface (catalogue #76024) Layer 07 Base of Hutton Sandstone surface (catalogue #76025) Layer 05-07 Base of Algebuckina Sandstone surface (catalogue #76952) Layer 08A Base of Evergreen and Marburg formations (catalogue #76026) Layer 08B Base of Poolowanna Formation (catalogue #76953) Layer 09 Base of Precipice Sandstone and equivalents surface (catalogue #76027) Layer 10 Base of Jurassic-Cretaceous sequence surface (catalogue #76028) This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76953.

  • NOTE: removed on request: 25 May 2016 by Sundaram Baskaran GWATER is a corporate database designed to accommodate a number of existing project groundwater and surface water data sets in AGSO. One of the aims in developing the database as a corporate repository is to enable sharing between AGSO projects allowing re-use of data sets derived from various sources such as the State and Territory water authorities. The database would also facilitate an easier exchange of data between AGSO and these authorities. This document presents an overview of the current structure of the database, and describes the present data entry and retrieval forms in some detail. Definitions of all tables and data fields contained within them are listed in an appendix. The database structure will not remain static. Future developments, such as the integration of data directly out of the database into geographic information systems, are expected to lead to modifications in the database structure with possible addition of new tables or fields. Use of GWATER by a range of project areas will undoubtedly lead to different needs in accessing the data, resulting in the request for further development of the data access tools.

  • Poster prepared for International Association of Hydrogeologists Congress 2013 In this study, a multi-disciplinary systems mapping approach has completely revised our understanding of the age, stratigraphy, mode of deposition and landscape evolution of Lower Darling Valley (LDV) sediments within the north-western Murray Basin. The Cenozoic sequence in this area contains Paleogene and Neogene shallow marine, fluvial and shoreline sediments overlain by Quaternary lacustrine, aeolian and fluvial units. The surficial Quaternary fluvial units of the valley form a complex group of morphostratigraphic units which vary in their distribution, character and geomorphic expression through the study area. Resolving the distribution of these units has been particularly important for understanding surface-groundwater interactions. In the LDV Quaternary fluvial sequence, multiple scroll-plain tracts are incised into higher, older more featureless floodplains. Prior to this study, these were respectively correlated to the Coonambidgal and Shepparton Formations of the Riverine Plain in the eastern Murray Basin and associated with the subsequently discarded Prior Stream/Ancestral River chronosequence of different climatically controlled depositional styles. In contrast to that proposition, we ascribe all LDV Quaternary fluvial deposition to lateral-migration depositional phases of one style, though with more variable stream discharges and channel and meander-scroll dimensions. Successively higher overbank-mud deposition through time obscures scroll traces and provides the main ongoing morphologic difference. A new morphostratigraphic unit, the Menindee Formation, refers to the mostly older and higher floodplain sediments, where scroll traces are obscured by overbank mud which continues to be deposited by the highest modern floods. Younger inset scroll-plain tracts, with visible scroll-plain traces, are still referred to the Coonambidgal Formation. Another new stratigraphic unit, the Willotia beds, refers to even older fluvial sediments, now above modern floodplain levels and mostly covered by aeolian sediments. This work provides important insights into the nature of Australian Quaternary fluvial deposition, with important implications for hydrogeological processes, groundwater resources and the assessment of managed aquifer recharge options.

  • Poster prepared for International Association of Hydrogeologists Congress 2013 Surface-groundwater interactions are often poorly understood. This is particularly true of many floodplain landscapes in Australia, where there is limited mapping of recharge and discharge zones along the major river systems, and only generalised quantification of hydrological fluxes based on widely spaced surface gauging stations. This is compounded by a lack of temporal data, with poor understanding of how surface-groundwater interactions change under different rainfall, river flow and flood regimes. In this study, high resolution LiDAR, in-river sonar, and airborne electromagnetic (AEM) datasets (validated by drilling) have been integrated to produce detailed 3-dimensional mapping that combines surface geomorphology and hydrogeology. This mapping enables potential recharge zones in the river and adjacent landscape to be identified and assessed under different flow regimes. These potential recharge zones and groundwater flow pathways were then compared against the spatial distribution of discontinuities in near-surface and deeper aquitard layers derived from the AEM interpretation. These 3D mapping constructs provide a framework for considering groundwater processes. Hydrochemistry data, allied with hydraulic data from a bore monitoring network, demonstrate the importance of recharge during significant flood events. In many places, the AEM data also affirm the spatial association between fresher groundwater resources and sites of river and floodplain leakage. At a more localised scale, hydrogeochemical data allows discrimination of lateral and vertical fluxes. Overall, this integrated approach provides an important conceptual framework to constrain hydrogeological modelling, and assessments of sustainable yield. The constructs are also invaluable in targeting and assessing managed aquifer recharge (MAR) options.

  • Geoscience Australia was recently involved in the reconceptualisation of the hydrogeology of the Great Artesian Basin (GAB), as part of the Great Artesian Basin Water Resource Assessment. The project refined the understanding of key hydrostratigraphic units within the GAB. This brochure describes key aquifers in the GAB and is designed to be distributed with samples from the aquifers. Aquifers covered are the Winton-Mackunda, Cadna-owie-Hooray, Adori Sandstone/Springbok Sandstone, Hutton Sandstone and Precipice Sandstone. Brochure prepared for the International Association of Hydrogeologists Congress 2013, Perth, Australia

  • Open Geospatial Consortium (OGC) web services offer a cost efficient technology that permits transfer of standardised data from distributed sources, removing the need for data to be regularly uploaded to a centralised database. When combined with community defined exchange standards, the OGC services offer a chance to access the latest data from the originating agency and return the data in a consistent format. Interchange and mark-up languages such as the Geography Markup Language (GML) provide standard structures for transferring geospatial information over the web. The IUGS Commission for the Management and Application of Geoscience Information (CGI) has an on-going collaborative project to develop a data model and exchange language based on GML for geological map and borehole data, the GeoScience Mark-up Language (GeoSciML). The Australian Government Geoscience Information Committee (GGIC) has used the GeoSciML model as a basis to cover mineral resources (EarthResourceML), and the Canadian Groundwater Information Network (GIN) has extended GeoSciML into the groundwater domain (GWML). The focus of these activities is to develop geoscience community schema that use globally accepted geospatial web service data exchange standards.