Keyword

Earth Sciences

20267 record(s)
 
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Scale
Topics
From 1 - 10 / 20267
  • Williams et al. (2009) report on new multibeam sonar bathymetry and underwater video data collected from submarine canyons and seamounts on Australia's southeast continental margin to 'investigate the degree to which geomorphic features act as surrogates for benthic megafaunal biodiversity' (p. 214). The authors describe what they view as deficiencies in the design of the Marine Protected Areas (MPAs) in the southeast region of Australia, in which geomorphology information was employed as a surrogate to infer regional-scale patterns of benthic biodiversity. This comment is designed to support and underscore the importance of evaluating MPA designs and the validity of using abiotic surrogates such as geomorphology to infer biodiversity patterns, and seeks to clarify some of the discrepancies in geomorphic terminologies and approaches used between the original study and the Williams et al. (2009) evaluation. It is our opinion that the MPA design criteria used by the Australian Government are incorrectly reported by Williams et al. (2009). In particular, we emphasise the necessity for consistent terminology and approaches when undertaking comparative analyses of geomorphic features. We show that the MPA selection criteria used by the Australian Government addressed the issues of false homogeneity described by Williams et al. (2009), but that final placement of MPAs was based on additional stakeholder considerations. Finally, we argue that although the Williams et al. (2009) study provides valuable information on biological distributions within seamounts and canyons, the hypothesis that geomorphic features (particularly seamounts and submarine canyons) are surrogates for benthic biodiversity is not tested explicitly by their study.

  • The Historical Bushfire Boundaries service represents the aggregation of jurisdictional supplied burnt areas polygons stemming from the early 1900's through to 2022 (excluding the Northern Territory). The burnt area data represents curated jurisdictional owned polygons of both bushfires and prescribed (planned) burns. To ensure the dataset adhered to the nationally approved and agreed data dictionary for fire history Geoscience Australia had to modify some of the attributes presented. The information provided within this service is reflective only of data supplied by participating authoritative agencies and may or may not represent all fire history within a state.

  • This preliminary report will provide a geochemical and ionic characterisation of groundwater, to determine baseline conditions and, if possible, to distinguish between different aquifers in the Laura basin. The groundwater quality data will be compared against the water quality guidelines for aquatic ecosystem protection, drinking water use, primary industries, use by industry, recreation and aesthetics, and cultural and spiritual values to assess the environmental values of groundwater and the treatment that may be required prior to reuse or discharge.

  • The Layered Geology of Australia web map service is a seamless national coverage of Australia’s surface and subsurface geology. Geology concealed under younger cover units are mapped by effectively removing the overlying stratigraphy (Liu et al., 2015). This dataset is a layered product and comprises five chronostratigraphic time slices: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic. As an example, the Mesozoic time slice (or layer) shows Mesozoic age geology that would be present if all Cenozoic units were removed. The Pre-Neoproterozoic time slice shows what would be visible if all Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic units were removed. The Cenozoic time slice layer for the national dataset was extracted from Raymond et al., 2012. Surface Geology of Australia, 1:1 000 000 scale, 2012 edition. Geoscience Australia, Canberra.

  • <div>The Vlaming Sub-Basin CO2 Storage Potential Study data package includes the datasets associated with the study in the Vlaming Sub-basin, located within the southern Perth Basin about 30 km west of Perth. The data in this data package supports the results of the Geoscience Australia Record 2015/009 and appendices. The study provides an evaluation of the CO2 geological storage potential of the Vlaming Sub-basin and was part of the Australian Government's National Low Emission Coal Initiative.</div>

  • The cartographic collection of the Doc Fisher Geoscience Library consists of the maps and air photos created or acquired by agency staff since the formation of BMR in 1946. This includes maps produced by agencies which have merged with these over the years, such as AUSLIG. Maps held include: Australian geological map series (1:250,000, 1:100,000 and the 1 mile series); topographic maps produced by NATMAP and its predecessors (1:250,000, 1:100,000 and 1:50,000) - latest editions only; various Australian geochemical, geophysical and other thematic maps; geoscience map series from other countries acquired on an exchange basis, including some with accompanying explanatory notes; Non-series maps acquired by donation or exchange; atlases. The Air photos are predominantly those used for mapping Australia and, to a lesser extent, Papua New Guinea and Antarctica, by BMR/AGSO from the 1940s to the 1980s. Geographical coverage of the sets is not complete, but many individual photos are unique in that they have pin points, overlays or other markings made by teams in the field. The Papua New Guinea photographs in the collection may, in many cases, be the only existing copies. Flight diagrams are also held for many (but not all) sets of air photos. Some other related materials, such as montages of aerial photographs (orthophotos), are also represented in the collection.

  • This service has been created specifically for display in the National Map and the chosen symbology may not suit other mapping applications. The Australian Topographic web map service is seamless national dataset coverage for the whole of Australia. These data are best suited to graphical applications. These data may vary greatly in quality depending on the method of capture and digitising specifications in place at the time of capture. The web map service portrays detailed graphic representation of features that appear on the Earth's surface. These features include the administration boundaries from the Geoscience Australia 250K Topographic Data, including state forest and reserves.

  • Legacy product - no abstract available

  • Geoscience Australia has been acquiring deep crustal reflection seismic transects throughout Australia since the 1960s. The results of these surveys have motivated major interpretations of important geological regions, contributed to the development of continental-scale geodynamic models and improved understanding about large-scale controls on mineral systems. Under the Onshore Energy Security Program, Geoscience Australia has acquired, processed and interpreted over 5000 km of new seismic reflection data. These transects are targeted over geological terrains in all mainland states which have potential for hydrocarbons, uranium and geothermal energy systems. The first project was undertaken in the Mt Isa and Georgetown regions of North Queensland. Interpretations of these results have identified several features of interest to mineral and energy explorers: a previously unknown basin with possible hydrocarbon and geothermal potential; a favourable setting for iron oxide uranium-copper-gold deposits; and, a favourable structural setting for orogenic gold deposits under basin cover. Other geophysical data were used to map these features in 3D, particularly into areas under cover. Seismic imaging of the full thickness of the crust provides essential, fundamental data to economic geologists about why major deposits occur where they do and reduces risk for companies considering expensive exploration programs under cover.

  • The Capel and Faust basins are located in a remote part of deepwater offshore eastern Australia. They are largely Cretaceous rifts formed within a 1600 km long ribbon of continental crust (the Lord Howe Rise) that became detached from Australia during the fragmentation of the eastern Gondwana plate margin and the opening of the Tasman Basin. As part of Geoscience Australia (GA)'s ongoing work to identify and evaluate the resource potential of Australia's offshore frontier basins, approximately 6 000 km of industry-standard, 106-fold 2D seismic data was acquired over the Capel and Faust basins during late 2006 and early 2007. These data supplemented earlier, sparse regional seismic data and were complemented by the acquisition of approximately 24 000 km2 of multibeam bathymetry and 11 000 line kilometres of shipboard gravity and magnetic data by GA in late 2007. This record details the interpretation of the seismic data and is intended to complement the release of a digital version of the interpretations in workstation formats (GeoFrame, Kingdom). Scientific conclusions drawn from the seismic interpretations and, very importantly, from an integration of the seismic, potential field and other data sets are beyond the scope of this record and are published in other GA Records, scientific papers and conference proceedings volumes.