From 1 - 10 / 291
  • Multibeam bathymetry gridded at 20m resolution and projected to WGS84 UTM zone 50S from the North Perth Survey (GA reference GA-0332).

  • This map was created from the Australian Maritime Boundaries Information System (AMBIS). It depicts the various jurisdictional limits and zones which exist within Australia's maritime jurisdiction. as at 2002.

  • Geoscience Australia carried out marine surveys in southeast Tasmania in 2008 and 2009 (GA0315) to map seabed bathymetry and characterise benthic environments through observation of habitats using underwater towed video. Data was acquired using the Tasmania Aquaculture and Fisheries Institute (TAFI) Research Vessel Challenger. Bathymetric mapping was undertaken in seven survey areas, including: Freycinet Pensinula (83 sq km, east coast and shelf); Tasman Peninsula (117 sq km, east coast and shelf); Port Arthur and adjacent open coast (17 sq km); The Friars (41 sq km, south of Bruny Island); lower Huon River estuary (39 sq km); D Entrecastreaux Channel (7 sq km, at Tinderbox north of Bruny Island), and; Maria Island (3 sq km, western side). Video characterisations of the seabed concentrated on areas of bedrock reef and adjacent seabed in all mapped areas, except for D Entrecastreaux Channel and Maria Island. The "challenger" folder contains processed multibeam backscatter data of the South East Tasmania Shelf. The SIMRAD EM3002 multibeam backscatter data were processed using the CMST_GA MB Process, a multibeam processing toolbox codeveloped by Geoscience Australia and Curtin University of Technology.

  • Exmouth Offshore Resource Map Series 1:1m

  • Surveying of nearshore areas in the Vestfold Hills using high resolution multibeam swath bathymetry provides both a detailed digital bathymetric model and information on sediment acoustic backscatter. Combined with underwater video transects and sediment sampling, these data can be used to identify and map geomorphic units. Six geomorphic units identified in the survey region include: Rocky outcrops, sediment-floored basins, pediments, steep-sided valleys, scarps and sheltered embayments. In addition to geomorphic units, the data reveal sedimentary structures that provide insights into sediment transport and erosion in the area. Ice keel pits and scours are common while seafloor channels, scour depressions and sand ribbons indicate transport and deposition by wind-driven currents and oceanographic circulation. Gullies and sediment lobes on steep slopes indicate mass movement of sediment. The sheltered embayments preserve a mantle of boulder sand probably deposited by cold-based glaciers. Automated techniques utilizing the bathymetric grid and backscatter to map landforms are useful in defining reproducible boundaries between geomorphic units but cannot easily be adapted to accurately classify the variations in sea floor texture and structure imaged by these data.

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. The dataset contains 11 bathymetry grids of Jervis Bay survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software. Please see the metadata for detailed informaiton.<p><p>This dataset is not to be used for navigational purposes.

  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave generated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. The "0308_carnarvon_shelf" folder contains raw multibeam backscatter data of the Carnarvorn Shelf. The raw multibeam backscatter data were collected along survey lines using GAs Kongsberg SIMRAD EM3002 in single head configuration from aboard RV Solander.

  • Geoscience Australia carried out marine surveys in southeast Tasmania in 2008 and 2009 (GA0315) to map seabed bathymetry and characterise benthic environments through observation of habitats using underwater towed video. Data was acquired using the Tasmania Aquaculture and Fisheries Institute (TAFI) Research Vessel Challenger. Bathymetric mapping was undertaken in seven survey areas, including: Freycinet Pensinula (83 sq km, east coast and shelf); Tasman Peninsula (117 sq km, east coast and shelf); Port Arthur and adjacent open coast (17 sq km); The Friars (41 sq km, south of Bruny Island); lower Huon River estuary (39 sq km); D Entrecastreaux Channel (7 sq km, at Tinderbox north of Bruny Island), and; Maria Island (3 sq km, western side). Video characterisations of the seabed concentrated on areas of bedrock reef and adjacent seabed in all mapped areas, except for D Entrecastreaux Channel and Maria Island. The "challenger" folder contains raw multibeam backscatter data from two surveys archived seperately in 0306_tasman1 and 0315_se_tasmania. The raw multibeam backscatter data were collected along survey lines using GAs Kongsberg SIMRAD EM3002 in single head configuration from aboard MV Challenger.

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. The "kimbla" folder contains processed multibeam backscatter data of Jarvis Bay. The SIMRAD EM3002 and EM3002D multibeam backscatter data were processed using the CMST-GA MB Process, a multibeam processing toolbox codeveloped by Geoscience Australia and Curtin University of Technology.