Petroleum
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
Well log scanned for Library to be held as a resource
-
Chiefly charts and maps, includes explanatory notes
-
All available processed seismic data and well completion reports relevant to the 2009 Acreage Release. Datasets available in Geoframe, Kingdom and Landmark workstation formats.
-
Annual update of map backing the combined GA/RET NAPE Conference brochure.
-
The annual offshore petroleum exploration acreage release is part of the government’s strategy to promote offshore oil and gas exploration. Each year, the government invites companies to bid for the opportunity to invest in oil and gas exploration in Australian waters. The 21 areas shown have been nominated by petroleum industry stakeholders to be considered for the 2021 acreage release. Areas nominated for release will not receive endorsement from government until submissions resulting from a public consultation process can be considered. This publication does not indicate a commitment to a particular course of action.
-
The petroleum systems summary report provides a compilation of the current understanding of petroleum systems for the McArthur Basin, including the prospective Beetaloo Sub-basin. The contents of this report are also available via the Geoscience Australia Portal at https://portal.ga.gov.au/, called The Petroleum Systems Summary Assessment Tool (Edwards et al., 2020). Three summaries have been developed as part of the Exploring for the Future (EFTF) program (Czarnota et al., 2020); the McArthur Basin, the Canning Basin, and a combined summary of the South Nicholson Basin and Isa Superbasin region. The petroleum systems summary reports aim to facilitate exploration by summarising key datasets related to conventional and unconventional hydrocarbon exploration, enabling a quick, high-level assessment the hydrocarbon prospectivity of the region.
-
The annual Good Oil conference is a valuable evnue for the promtion of the open acreage for offshore petroleum exploration and the showcasing of GA's innovative work in petroleum geoscience.
-
Package holding all available processed data and well completion reports relevant to the Browse 2007Acreage Release in workstation format - Geoframe, Kingdom and Landmark.
-
Package holding all available processed data and well completion reports relevant to the Petrel 2007Acreage Release in workstation format - Geoframe, Kingdom and Landmark.
-
An assessment of tight, shale and deep coal gas prospectivity of the Cooper Basin has been undertaken as part of the Australian Government’s Geological and Bioregional Assessment Program. This aims to both encourage exploration and understand the potential impacts of resource development on water and the environment. This appendix presents a review of the regional petroleum prospectivity, its exploration, and the characterisation and analysis of shale, deep coal and tight gas in Carboniferous–Permian Gidgealpa Group of the Cooper Basin. The Cooper Basin is Australia’s premier onshore conventional hydrocarbon-producing province providing domestic gas for the East Coast Gas Market. As of December 2014, the Cooper and Eromanga basins have produced 6.54 Tcf of gas since 1969. The basins contain 256 gas fields as well as 166 oil fields that are currently in production. Gas is predominantly reservoired in the Cooper Basin, whereas the overlying Eromanga Basin hosts mainly oil. Hydrocarbon shows are found in the reservoir units throughout the succession. Recently, exploration targeting a range of unconventional plays has gained momentum. Unconventional play types within the mainly Permian Gidgealpa Group include shale gas associated with the Patchawarra Formation and the Roseneath and Murteree shales, tight and deep coal gas accumulations within the Toolachee, Epsilon and Patchawarra formations and additional tight gas plays in the Daralingie Formation and Tirrawarra Sandstone. To date, at least 80 wells have been drilled to test shale, tight and deep coal gas plays. Given the basin’s existing conventional production, and its processing and pipeline infrastructure, these plays are well placed to be rapidly commercialised, should exploration be successful. A prospectivity confidence mapping workflow was developed to evaluate the regional distribution of key unconventional gas plays within the Gidgealpa Group. For each play type, key physical properties were identified and characterised. The specific physical properties evaluated include formation extents, source rock properties (net thickness, TOC, quality and thermal maturity), reservoir characteristics (porosity, permeability, gas saturation and brittleness), regional stress regime and overpressure. Parameters for mappable physical properties were individually classified to assign prospectivity rankings. Individual properties were then multiplied together produce formation and play-specific prospectivity confidence maps. Non-mappable criteria were not integrated into the prospectivity mapping but were used to better understand the geological characteristics of the formations. Overall, both source and reservoir characteristics were found to be moderately to highly favourable for all play types assessed. Abundant source rocks are present in the Gidgealpa Group across the Cooper Basin. The Toolachee and Patchawarra formations are the richest, thickest and most extensive source rocks, with good to excellent source potential across their entire formation extents. Net shale, coal and sand thicknesses also demonstrate an abundance of potential reservoir units in the Gidgealpa Group across the basin. The predominantly fluvial Toolachee Formation is thickest in the Windorah Trough and Ullenbury Depression. Average effective porosity for assessed tight gas plays ranges from 6.7 % in the fluvio-deltaic to lacustrine Epsilon Formation to 7.8% in the Toolachee Formation. Based on an assessment of the brittleness of the shales and coaly shales, the Patchawarra Formation appears to be most favourable for hydraulic stimulation with an average Brittleness Index of 0.695, indicative of brittle rocks. This compares to the less brittle lacustrine Roseneath and Murteree shales have brittleness indices of 0.343 and 0.374, respectively. As-received total gas content is favourable, with averages ranging from 1.3 scc/g in the Patchawarra Formation to 1.6 scc/g for the Murteree Shale. The regional stress regime has an approximately east-west oriented maximum horizontal stress azimuth, resulting in predominantly strike-slip faulting to reverse faulting, depending on the depth, lithology and proximity of structures, e.g. GMI ridge. Significant overpressure is present at depths greater than 2800 m, especially in the Nappamerri and Patchawarra troughs. Overpressures are generally constrained to the Gidgealpa Group, with the Toolachee Formation being the youngest formation in which significant overpressure has been achieved. Based on a review of the geomechanical properties of the Cooper Basin sedimentary succession, it was found that stress variations within and between lithologies and formations are likely to provide natural barriers to fracture propagation between the gas saturated Permian sediments and the overlying Eromanga Basin. Prospectivity confidence maps were generated for six individual shale and deep coal plays and one combined tight gas play across the Gidgealpa Group. Comparison with key wells targeting shale, tight and deep coal gas plays, indicates that the prospectivity confidence mapping results are largely consistent with exploration activity to-date, with the highest prospectivity confidence for tight, shale and deep coal gas plays mapped in the Nappamerri, Patchawarra, Windorah, Allunga and Wooloo troughs and the southern Ullenbury Depression. Consequently, there is more confidence in the resultant maps in the southern Cooper Basin as more data was available here. Prospectivity confidence maps are relative, therefore a high prospectivity confidence does not equate to 100 % chance of success for a particular formation or play. The outputs of this regional prospectivity assessment identify areas warranting more detailed data collection and exploration and the assessment of potential impacts of resource development on water and the environment. The results also have the potential to encourage further exploration investment in underexplored regions of the Cooper Basin.