From 1 - 10 / 138
  • This document contains metadata for the hydrodynamics products produced by the Great Artesian Basin Water Resource Assessment

  • Development of coal mines and coal seam gas (CSG) resources can significantly impact groundwater systems, hydrogeological processes and the surface environment. Consequently, a sound understanding of basin-scale hydrogeology Is critical to developing effective water management strategies. The Australian Government Department of Sustainability, Environment, Water, Population and Communities recently funded investigation of the potential impacts of the development of coal mining and CSG production in several Australian coal basins. The Laura Basin was investigated as part of this program due to the significant environmental and cultural heritage values of the region which include several National Parks and the Great Barrier Reef Marine Park. The Laura Basin is a geological basin on Cape York Peninsula, QLD. There has been relatively limited development of the groundwater resources of the basin to date, which predominantly occur in Mesozoic sandstone units, the Dalrymple Sandstone and the Gilbert River Formation, which are contiguous with the Great Artesian Basin rocks of the Carpentaria Basin.

  • Phase 1 report (Exposure/Impact Analysis) for Assessment of Groundwater Vulnerability to Climate Change in the Pacific Islands Project.

  • This data set comprises one of three archives of Geoscience Australia work in the project "A Consistent Approach to Groundwater Recharge Determination in Data Poor Areas". The project was carried out by CSIRO and Geoscience Australia and was funded by the National Water Commission Raising National Water Standards program. The data contained included Original data sourced for the project, Final data produced by the project, MXD's of maps created, and tools used within the project. The archives created for this project comprise: 1. Data archive. Data set stored in the GA CDS. Geocat Record number 79804 2. Adminstration and publication archive. Documents stored in TRIM Project P10/67 RECHARGE-DISCHARGE PROJECT 3. References archive. Endnote library located at \\nas\eg\water\References\Recharge_Discharge_Project.enl For more information about the creation of these archives, including the location of files, see TRIM D2014-102808 For more information about the project, see the following references: Leaney F, Crosbie R, O'Grady A, Jolly I, Gow L, Davies P, Wilford J and Kilgour P. 2011. Recharge and discharge estimation in data poor areas: Scientific reference guide. CSIRO: Water for a Healthy Country National Research Flagship. 61 pp (GA Record No. 2011/46 GACat # 71941) Jolly I, Gow L, Davies P, O'Grady A, Leaney F, Crosbie R, Wilford J and Kilgour P. 2011. Recharge and discharge estimation in data poor areas: User guide for the recharge and discharge estimation spreadsheets and MapConnect. CSIRO: Water for a Healthy Country National Research Flagship. 40 pp. (GA Record No. 2011/35 GeoCat # 71940) Pain, C.F., Gow, L.J, Wilford, J.R. and Kilgour, P. 2011. Mapping approaches to recharge and discharge estimation and associated input datasets. A report for CSIRO: Water for a Healthy Country National Research Flagship. (Professional Opinion No. 2011/01 GeoCat # 70392)

  • This document lists metadata for the hydrogeology products produced by the Great Artesian Basin Water Resource Assessment.

  • Poster prepared for International Association of Hydrogeologists Congress 2013 Sonic drilling is a relatively new technology that was used successfully to obtain relatively uncontaminated and undisturbed continuous core samples with excellent (>99%) recovery rates to depths of 206m in unconsolidated fluvio-lacustrine sediments of the Darling River floodplain. However, there are limitations with the standard sonic coring method. Sands, in particular, are disturbed when they are vibrated out of the core barrel into the flexible plastic sampling tube. There can be changes to moisture content, pore fluid chemistry and sediment mineralogy on exposure to the atmosphere, even when the samples are processed and analysed soon after collection. The option exists during sonic drilling to encapsulate the core in rigid polycarbonate lexan tubes. Although this increases costs and reduces drilling rates, atmospheric exposure of the core during drilling is reduced to the ends of the lexan tubes before being capped. In addition, the tubes can be purged with an inert gas such as argon. Lexan coring is best carried out below the watertable as the heat from drilling dry clays can cause the polycarbonate to melt. In the study, 60 sonic holes (4.5 km) and 40 rotary mud holes (2 km) were obtained as part of a program to map and assess potential groundwater resources and managed aquifer recharge (MAR) targets over a large area (7,500 km2) of the Darling River floodplain. Two of the sonic bores were drilled to depths of 60 metres to obtain lexan-encapsulated core samples. These cores were used to obtain less perturbed samples for pore fluid analysis (salinity, major ions, trace metals, stable isotopes), textural analysis, and analysis of mineral phases to help assess aquifer clogging potential (using XRD, XRF, SEM). An additional advantage of the lexan coring was the recovery of encapsulated and intact sediment intervals for determining porosities, effective porosities, hydraulic conductivities, and other geophysical and petrophysical measurements. By painting some tubes black, sand samples were also successfully obtained for optically stimulated luminescence (OSL) dating. Alternatively, opaque black lexan can be made to order by the supplier. Overall, the superior sample integrity obtained from lexan coring enables a greater range of hydrogeological and hydrochemical parameters to be assessed.

  • This report describes the findings of the Great Artesian Basin Water Resource Assessment that have led to advancing the understanding of the GAB. It encapsulates findings that are presented in four region reports and a technical report on conceptualising the GAB that were prepared for the Assessment. Advancing the conceptual understanding of the GAB requires careful evaluation of the geological framework (i.e. the layers of rock), description of how the geology translates into hydrostratigraphy (i.e. the relative ability of specific layers to store and transmit water) and investigation of the groundwater conditions (i.e. watertable, groundwater levels, and inferred movement). It is the geological framework, hydrostratigraphy and groundwater conditions that are the basis for conceptualising water resources in the GAB. The conceptual understanding of the GAB provides the foundation for assessing water availability and providing guidance to water policy and water resource planning.

  • Poster prepared for International Association of Hydrogeologists Congress 2013 In this study, AEM mapping validated by drilling has enabled the lateral extents and thickness of the Pliocene aquifers to be identified. The Pliocene in this area dominantly comprises the fluvial Calivil Formation, with the shallow marine Loxton-Parilla Sands restricted to the southernmost part of the area. Post-depositional warping, tilting and discrete offsets associated with neotoectonics are also recognised. Facies analysis indicates the Calivil was deposited in deep braided streams across a dissected sedimentary landscape. Overall, the sequence is fining-upwards, with evidence for progradation over the Loxton-Parilla. Channel fill materials comprise gravels and sands, and local fine-grained units represent abandoned channels and local floodplain sediments. Integration of textural and hydraulic testing data has revealed there are five hydraulic classes within the Calivil,. At a local scale (10s to 100s of metres), there is considerable lithological heterogeneity, however at a regional scale (kms), sands and gravels are widely distributed with particularly good aquifers developed in palaeochannels and at the confluence of palaeo-river systems. Aquifer testing has revealed Calivil to be an excellent aquifer, with high storage capacity, and locally very high transmissivities (up to 50 l/s). Integration of the AEM data with borehole geophysical data (gamma, induction and NMR) and textural and pore fluid data has enabled maps of aquifer properties including groundwater salinity, porosity, storage and hydraulic conductivity to be derived. Overall, the multi-disciplinary approach adopted has enabled rapid delineation of new groundwater resources, and facilitated assessment of the Pliocene aquifers for managed aquifer recharge.

  • Freshwater coastal aquifers provide an important resource for irrigated agriculture, human consumption and the natural environment. Approximately 18 million people live within 50 km of the coast in Australia, and many coastal communities are reliant on groundwater. These coastal aquifers are vulnerable to seawater intrusion (SWI) - the landward encroachment of seawater - due to their close proximity to the ocean. To assess the threat of SWI in Australia, a comprehensive literature review was undertaken with input from state/territory agencies. The literature review, in combination with contributions from stakeholders, identified sites within each of the states and the Northern Territory where SWI had been reported or where it was considered to be a serious threat. International Association of Hydrogeologists 2013 Congress poster

  • This project aims to characterise the hydrogeochemistry of groundwater associated with coal seams and surrounding aquifers in the Surat Region and Laura Basin. In addition, the project provides an assessment of the environmental values of groundwater in relation to ecological and human use, and general guidance on groundwater quality monitoring strategies. . Full details of the methodology and findings of the study, including limitations and assumptions are provided in this project technical report.