From 1 - 10 / 142
  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • In many areas of the world, vegetation dynamics in semi-arid floodplain environments have been seriously impacted by increased river regulation and groundwater use. With increases in regulation along many rivers in the Murray-Darling Basin, flood volume, seasonality and frequency have changed which has in turn affected the condition and distribution of vegetation. Floodplain vegetation can be degraded from both too much and too little water due to regulation. Over-regulation and increased use of groundwater in these landscapes can exacerbate the effects related to natural climate variability. Prolonged flooding of woody plants has been found to induce a number of physiological disturbances such as early stomatal closure and inhibition of photosynthesis. However, drought conditions can also result in leaf biomass reduction and sapwood area decline. Depending on the species, different inundation and drought tolerances are observed. Identification of groundwater-dependent terrestrial vegetation, and assessment of the relative importance of different water sources to vegetation dynamics, typically requires detailed ecophysiological studies over a number of seasons or years as shown in Chowilla, New South Wales [] and Swan Coastal Plain, Western Australia []. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Quicker, more regional approaches to mapping groundwater-dependent vegetation have consequently evolved with technological advancements in remote sensing techniques. Such an approach was used in this study. LiDAR canopy digital elevation model (CDEM) and foliage projected cover (FPC) data were combined with Landsat imagery in order to characterise the spatial and temporal behaviour of woody vegetation in the Lower Darling Floodplain, New South Wales. The multi-temporal dynamics of the woody vegetation were then compared to the estimated availability of different water sources in order to better understand water requirements.

  • Poster prepared for International Association of Hydrogeologists Congress 2013 Sonic drilling is a relatively new technology that was used successfully to obtain relatively uncontaminated and undisturbed continuous core samples with excellent (>99%) recovery rates to depths of 206m in unconsolidated fluvio-lacustrine sediments of the Darling River floodplain. However, there are limitations with the standard sonic coring method. Sands, in particular, are disturbed when they are vibrated out of the core barrel into the flexible plastic sampling tube. There can be changes to moisture content, pore fluid chemistry and sediment mineralogy on exposure to the atmosphere, even when the samples are processed and analysed soon after collection. The option exists during sonic drilling to encapsulate the core in rigid polycarbonate lexan tubes. Although this increases costs and reduces drilling rates, atmospheric exposure of the core during drilling is reduced to the ends of the lexan tubes before being capped. In addition, the tubes can be purged with an inert gas such as argon. Lexan coring is best carried out below the watertable as the heat from drilling dry clays can cause the polycarbonate to melt. In the study, 60 sonic holes (4.5 km) and 40 rotary mud holes (2 km) were obtained as part of a program to map and assess potential groundwater resources and managed aquifer recharge (MAR) targets over a large area (7,500 km2) of the Darling River floodplain. Two of the sonic bores were drilled to depths of 60 metres to obtain lexan-encapsulated core samples. These cores were used to obtain less perturbed samples for pore fluid analysis (salinity, major ions, trace metals, stable isotopes), textural analysis, and analysis of mineral phases to help assess aquifer clogging potential (using XRD, XRF, SEM). An additional advantage of the lexan coring was the recovery of encapsulated and intact sediment intervals for determining porosities, effective porosities, hydraulic conductivities, and other geophysical and petrophysical measurements. By painting some tubes black, sand samples were also successfully obtained for optically stimulated luminescence (OSL) dating. Alternatively, opaque black lexan can be made to order by the supplier. Overall, the superior sample integrity obtained from lexan coring enables a greater range of hydrogeological and hydrochemical parameters to be assessed.

  • The Great Artesian Basin Water Resource Assessment (GABWRA) provided fundamental underpinning information for the Great Artesian Basin (GAB). Key data sets produced by GABWRA include contact surfaces between major aquifers and aquitards within the GAB. This poster covers the 3D visualisation of these surfaces in GOCAD (R) and in the Geoscience Australia World Wind 3D data viewer. Poster prepared for the International Association of Hydrogeologists congress 2013, Perth, Australia

  • Phase 1 report (Exposure/Impact Analysis) for Assessment of Groundwater Vulnerability to Climate Change in the Pacific Islands Project.

  • This report describes the findings of the Great Artesian Basin Water Resource Assessment that have led to advancing the understanding of the GAB. It encapsulates findings that are presented in four region reports and a technical report on conceptualising the GAB that were prepared for the Assessment. Advancing the conceptual understanding of the GAB requires careful evaluation of the geological framework (i.e. the layers of rock), description of how the geology translates into hydrostratigraphy (i.e. the relative ability of specific layers to store and transmit water) and investigation of the groundwater conditions (i.e. watertable, groundwater levels, and inferred movement). It is the geological framework, hydrostratigraphy and groundwater conditions that are the basis for conceptualising water resources in the GAB. The conceptual understanding of the GAB provides the foundation for assessing water availability and providing guidance to water policy and water resource planning.

  • Fresh groundwater resources are a highly valuable commodity, particularly in semi-arid to arid landscapes where annual precipitation is low and surface water is scarce. Water security, often achieved through the development of groundwater resources, is a high priority for rural communities within these water-limited landscapes. However this is often at the expense of the environment when alterations to the groundwater system, often in conjunction with drought conditions, can detrimentally impact floodplain and riparian vegetation structure and function. Remote-sensing methods can be used to detect such changes in vegetation. In this study, a multi-temporal Landsat Normalised Difference Vegetation Index (NDVI) approach was used to detect changes in riparian and floodplain vegetation in the Lower-Darling floodplain, NSW, Australia. When integrated with surface and subsurface data, these changes provided insight into how surface water availability and subsurface geological and hydrogeological characteristics influenced vegetation distribution and behaviour at multiple scales. It was found that while the availability of water resources was the primary driver of changes in vegetation canopy dynamics, this availability was strongly influenced by both tectonic and hydrogeological processes. These findings were of particular importance when considering the suitability of groundwater development options and they have implications for future groundwater assessment studies.

  • Poster prepared for International Association of Hydrogeologists Congress 2013 The Broken Hill Managed Aquifer Recharge (BHMAR) project has successfully mapped a multi-layered sequence of aquitards and aquifers, as well potential groundwater resource and managed aquifer recharge (MAR) targets, in the top 100m of the Darling Floodplain. Near-surface aquitards overlying the Pliocene target aquifers (fluvial Calivil Formation (CFm) and marine Loxton-Parilla Sands (LPS)), were identified initially as variably conductive layers in airborne electromagnetic (AEM) data, and validated by drilling and complementary borehole geophysical, textural, hydrogeological and hydrochemical studies. The stratigraphic unit underlying the Pliocene aquifers is the Miocene upper Renmark Group (uRG). Drilling and AEM data have confirmed this unit is present throughout the study area, deposited predominantly as thick muds. Facies and biofacies analysis suggests these muds were deposited on a low relief sedimentary plain with a high water table and numerous permanent water bodies, with relatively minor sand bodies deposited in narrow anastomosing fixed channel streams. Groundwater in the upper uRG is saline, and muddy sediments form a strongly conductive layer beneath the Pliocene aquifers. This is a much harder geophysical target than the upper confining aquitards, as the target lies at depths of 80-120m, which is near the depth resolution of the AEM system. Furthermore, there is little conductivity contrast between the Pliocene and uRG sediments except in areas where there is fresh groundwater in the former. Hydrochemical and hydrodynamic data shows that there is limited hydrological connection between the uRG and less saline Pliocene aquifers, except where the Pliocene is underlain by uRG channel sands. These channels are much narrower (10s to ~100m) and thinner (1 to 10m) compared with palaeochannels in the overlying CFm. Where the channels are connected, there can be a distinct salinity gradient from the Pliocene into the uRG sands, indicating localised mixing. Given the potential for up-coning of saline groundwater in these instances, a number of sites (e.g. Menindee Common), have been assessed as unsuitable for MAR. Overall, the uRG muds act as a good lower confining aquitard to the Pliocene aquifers over most of the project area, including a number of potential MAR and groundwater resource targets.

  • Workshop Proceedings of the National Coastal Groundwater Management Knowledge Transfer Workshop held in Canberra on 28-29 May 2013

  • The approximate location of the Helidon Ridge (proposed name) - a basement ridge likely to define the hydrogeological boundary between the Surat and Clarence-Moreton basins in the GAB. To be used in conjunction with dataset 'Groundwater divide in the Hutton Sandstone boundary' (Geoscience Australia, Catalogue #77024, 2013) to define the easternmost boundary of the GAB. The approximate location of the Helidon ridge was interpreted from a GOCAD model layer of Base of Hutton Sandstone surface (Geoscience Australia dataset, Catalogue #76025, 2013). This data set provides an approximate location of Helidon ridge as a polygon in Shapefile format. The polygon represents the area in which the boundary is likely to be located, as the exact location is open to interpretation. Data is available in Shapefile format This data set was used in: Figure 5.3 in Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. Figure 5.3 in Smerdon BD and Ransley TR (eds) (2012) Water resource assessment for the Surat region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia Figure 14 in Smerdon BD, Marston FM and Ransley TR (2012) Water resource assessment for the Surat region. Summary of a report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. 16pp. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 75836.