From 1 - 10 / 92
  • The Secondary Coastal Sediment Compartment data set represents a sub-regional-scale (1:100 000 - 1:25 000) compartmentalisation of the Australian coastal zone into spatial units within (and between) which sediment movement processes are considered to be significant at scales relevant to coastal management. The Primary and accompanying Secondary Coastal Sediment Compartment data sets were created by a panel of coastal science experts who developed a series of broader scale data sets (Coastal Realms, Regions and Divisions) in order to hierarchically subdivide the coastal zone on the basis of key environmental attributes. Once the regional (1:250 000) scale was reached expert knowledge of coastal geomorphology and processes was used to further refine the sub-division and create both the Primary and Secondary Sediment Compartment data sets. Environmental factors determining the occurrence and extents of these compartments include major geological structures, major geomorphic process boundaries, orientation of the coastline and recurring patterns of landform and geology - these attributes are given in priority order below. 1 - Gross lithological/geological changes (e.g. transition from sedimentary to igneous rocks). 2 - Geomorphic (topographic) features characterising a compartment boundary (often bedrock-controlled) (e.g. peninsulas, headlands, cliffs). 3 - Dominant landform types (e.g. large cuspate foreland, tombolos and extensive sandy beaches versus headland-bound pocket beaches). 4 - Changes in the orientation (aspect) of the shoreline.

  • This point data set was created to identify locations on (or near) the Australian coastline which were considered to represent significant changes in key environmental attributes of the coast as they pertain to sediment movement in the coastal zone. This data was created during and subsequent to the technical workshop hosted by Geoscience Australia in Canberra from 16-18 October 2012. This workshop brought together the team of Australian coastal science experts listed below. - Prof. Bruce Thom - University of Sydney and the Wentworth Group - Prof. Andy Short - University of Sydney - Prof. Colin Woodroffe - University of Wollongong - Dr. Ian Eliot - University of Western Australia - Mr. Chris Sharples - University of Tasmania - Dr. Brendan Brooke - Geoscience Australia - Dr. Scott Nichol - Geoscience Australia The technical workshop had the goal of creating regional (primary) and sub-regional (secondary) scale coastal sediment compartments - spatial zones (represented by polygons) within (or between) which sediment movement could be considered on scales and timeframes relevant to coastal management. The first step in this process involved the expert panel identifying and defining boundary points along the Australian coastline, after which the expert panel assigned relevant environmental attributes to each point. Following the development of the boundary points data set, breaklines representing the coast-perpendicular compartment boundaries were generated by extending a line from the defined offshore bathymetric contour to the defined onshore elevation contour. In every case a compartment breakline extends seaward and landward of its boundary point.

  • The Primary Coastal Sediment Compartment data set represents a regional-scale (1:250 000 - 1:100 000) compartmentalisation of the Australian coastal zone into spatial units within (and between) which sediment movement processes are considered to be significant at scales relevant to coastal management. The Primary and accompanying Secondary Coastal Sediment Compartment data sets were created by a panel of coastal science experts who developed a series of broader scale data sets (Coastal Realms, Regions and Divisions) in order to hierarchically subdivide the coastal zone on the basis of key environmental attributes. Once the regional (1:250 000) scale was reached expert knowledge of coastal geomorphology and processes was used to further refine the sub-division and create both the Primary and Secondary Sediment Compartment data sets. Environmental factors determining the occurrence and extents of these compartments include major geological structures, major geomorphic process boundaries, orientation of the coastline and recurring patterns of landform and geology - these attributes are given in priority order below. 1 - Gross lithological/geological changes (e.g. transition from sedimentary to igneous rocks). 2 - Geomorphic (topographic) features characterising a compartment boundary (often bedrock-controlled) (e.g. peninsulas, headlands, cliffs). 3 - Dominant landform types (e.g. large cuspate foreland, tombolos and extensive sandy beaches versus headland-bound pocket beaches). 4 - Changes in the orientation (aspect) of the shoreline.

  • Melbourne Geelong LiDAR 2007

  • This web service contains a selection of remotely sensed raster products used in the Exploring for the Future (EFTF) East Kimberley Groundwater Project. Selected products were derived from LiDAR, Landsat (5, 7, and 8), and Sentinel-2 data. Datasets include: 1) mosaic 5 m digital elevation model (DEM) with shaded relief; 2) vegetation structure stratum and substratum classes; 3) Normalised Difference Vegetation Index (NDVI) 20th, 50th, and 80th percentiles; 4) Tasselled Cap exceedance summaries; 5) Normalised Difference Moisture Index (NDMI) and Normalised Difference Wetness Index (NDWI). Landsat spectral reflectance products can be used to highlight land cover characteristics such as brightness, greenness and wetness, and vegetation condition; Sentinel-2 datasets help to detect vegetation moisture stress or waterlogging; LiDAR datasets providing a five meter DEM and vegetation structure stratum classes for detailed analysis of vegetation and relief.

  • This web service contains a selection of remotely sensed raster products used in the Exploring for the Future (EFTF) East Kimberley Groundwater Project. Selected products were derived from LiDAR, Landsat (5, 7, and 8), and Sentinel-2 data. Datasets include: 1) mosaic 5 m digital elevation model (DEM) with shaded relief; 2) vegetation structure stratum and substratum classes; 3) Normalised Difference Vegetation Index (NDVI) 20th, 50th, and 80th percentiles; 4) Tasselled Cap exceedance summaries; 5) Normalised Difference Moisture Index (NDMI) and Normalised Difference Wetness Index (NDWI). Landsat spectral reflectance products can be used to highlight land cover characteristics such as brightness, greenness and wetness, and vegetation condition; Sentinel-2 datasets help to detect vegetation moisture stress or waterlogging; LiDAR datasets providing a five meter DEM and vegetation structure stratum classes for detailed analysis of vegetation and relief.

  • <b>This record was retired 29/03/2022 with approval from S.Oliver as it has been superseded by eCat 132310 GA Landsat 7 ETM+ Analysis Ready Data Collection 3</b> Surface Reflectance (SR) is a suite of Earth Observation (EO) products from GA. The SR product suite provides standardised optical surface reflectance datasets using robust physical models to correct for variations in image radiance values due to atmospheric properties, and sun and sensor geometry. The resulting stack of surface reflectance grids are consistent over space and time which is instrumental in identifying and quantifying environmental change. SR is based on radiance data from the Landsat TM/ETM+ and OLI sensors.

  • <b>This record was retired 29/03/2022 with approval from S.Oliver as it has been superseded by eCat 130853 GA Landsat 5 TM Analysis Ready Data Collection 3</b> Surface Reflectance (SR) is a suite of Earth Observation (EO) products from GA. The SR product suite provides standardised optical surface reflectance datasets using robust physical models to correct for variations in image radiance values due to atmospheric properties, and sun and sensor geometry. The resulting stack of surface reflectance grids are consistent over space and time which is instrumental in identifying and quantifying environmental change. SR is based on radiance data from the Landsat TM/ETM+ and OLI sensors.

  • This report presents the location and sources of sediment samples and observational data in the Vestfold Hills (between 68° 23' and 68° 40' S, 77° 50' and 78° 35' E) to provide physical and chemical properties, sedimentary processes, and glacial and marine history of the terrestrial environment. This compilation of samples and observations incorporates data collected from the 1970s to present from published and unpublished sources. Sample locations and types are presented here to make them more readily available for further analysis and interpretation. Samples and observations are presented as point locations and include sample type, analyses, and references to the original data source.

  • This job was planned due to a requirement for high accuracy aerial photography to be used as part of a cadastral adjustment program. The high quality laser derived surface means that there would be minimal distortion on the part of the imagery and so it would suit the purpose well. The job was extended beyond the immediate town extents as the council was also interested in floodplain mapping and cadastral adjustment in the surrounds.