Natural Hazards
Type of resources
Keywords
Publication year
Service types
Topics
-
An understanding of the vulnerability of the built environment to ground shaking is vital to the impact and risk assessment process. The vulnerability of Unreinforced Masonry (URM) buildings to earthquake hazard as been repeatedly demonstrated around the world. A portion of Australia's building stock is made up of legacy URM buildings dating from before the First World War. These buildings are typical of inner-city suburbs and the centres of country towns. The Kalgoorlie Earthquake of 20 April, 2010 offered the best opportunity to study the vulnerability of Australian URM buildings to ground shaking since the Newcastle Earthquake in 1989. The Kalgoorlie earthquake caused shaking of MMI intensity VI in Boulder and intensity V in Kalgoorlie. Damage was principally confined to turn-of-the-century URM buildings with only slight damage observed in more modern cavity masonry domestic residential buildings. Geoscience Australia led a post-event field survey to record damage to buildings in Boulder - Kalgoorlie. The survey recorded street-view imagery of the entire urban area and subsequently a detailed survey template was complete during a door-to-door foot survey. The foot survey targeted the entire population of turn-of-the-century buildings in Boulder-Kalgoorlie together with a sample of modern cavity masonry domestic residential buildings. The aim of the foot survey was to capture sufficient information to enable the calculation of a damage index (or loss ratio) for each surveyed building. The survey and subsequent analysis revealed an average damage index for turn-of-the-century URM buildings of 0.062 in Boulder (MMI VI) and 0.019 in Kalgoorlie (MMI V). These values are slightly higher than those reported post-Newcastle for ? . Difficulties encountered with computing damage indices for individual buildings are enumerated and recommendations are presented to improve future post-earthquake population surveys.
-
A community Safety Capbility Flyer was produced to showcase the work undertaken in the Community Safety Value Stream. The flyer includes an introduction to the Community Safety Value Stream, case studies of the work Geoscience Australia does in this space and information on how to engage with Geoscience Australia via the products, tools, models and applications that are produced. This flyer is intended for use a conferences and where promotional material would beneficial to showcase the work undertaken at Geoscience Australia such as the Floodplain Management Association Conference on 19-22 May 2015.
-
Probabilistic earthquake hazard maps were prepared for the Fiji Islands. Damage has been caused by Fiji earthquakes around 1850, in 1884, 1902, 1919, 1932 (twice), 1953 and 1979. No previous assessment had produced a comprehensive description of the earthquake hazard in Fiji and the present study was initiated in 1990 when the author was attached to the Mineral Resources Department, Fiji. Collection and analysis of data continued at MRD until 1992 and the study was completed at the Australian Geological Survey Organisation in 1993-1997. The aim of the study was to produce probabilistic earthquake hazard maps which can be used in the National Building Code for Fiji, for design of special structures, for planning, for emergency management and for risk management. Few, if any, similar studies have been undertaken in the seismically active Southwest Pacific.
-
The Australian Flood Studies Database is available on line by Geoscience Australia. The database provides metadata on Australian flood studies and information on flood risk with a digital version where available. The purpose of the document is to guide new users in data entry and uploading of flood studies to a level acceptable for inclusion in the database.
-
The Australian Flood Studies Database is available on line by Geoscience Australia via the Australian Flood Risk Information Portal. The database provides metadata on Australian flood studies and information on flood risk with a digital version where available. The purpose of the document is to guide new users in data entry and uploading of flood studies to a level acceptable for inclusion in the database.
-
With a population of over 250 million people, Indonesia is the fourth most populous country in the world (United Nations, 2013). Indonesia also experiences more earthquakes than any other country in the world (USGS, 2015). Its borders encompass one of the most active tectonic regions on Earth including over 18 000 km of major tectonic plate boundary, more than twice that of Japan or Papua New Guinea (Bird, 2003). The potential for this tectonic activity to impact large populations has been tragically demonstrated by the 20004 Sumatra earthquake and tsunami. In order to inform earthquake risk reduction in Indonesia, a new national earthquake hazard map was developed in 2010 (Irsyam et al., 2010). In this report historical records of damaging earthquakes from the 17th to 19th centuries are used to test our current understanding of earthquake hazard in Indonesia and identify areas where further research is needed. In this report we address the following questions: - How well does our current understanding of earthquake hazard in Indonesia reflect historical activity? - Can we associate major historical earthquakes with known active faults, and are these accounted for in current assessments of earthquake hazard? - Does the current earthquake hazard map predict a frequency and intensity of shaking commensurate with the historical record? - What would the impact of these historical earthquakes be if they were to reoccur today? To help answer questions like these, this report collates historical observations of eight large earthquakes from Java, Bali and Nusa Tenggara between 1699 and 1867. These observations are then used to: - Identify plausible sources for each event; - Develop ground shaking models using the OpenQuake Engine (GEM Foundation, 2015); - Assess the validity of the current national seismic hazard map; and - Estimate fatalities were the historical events to occur today using the InaSAFE (InaSAFE.org, 2015) software.
-
In June 2012 Geoscience Australia was commissioned by Commonwealth Scientific and Industrial Research Organisation (CSIRO) to undertake detailed wind hazard assessments for 14 Pacific Island countries and East Timor as part of the Pacific-Australia Climate Change Science and Adaptation Planning (PACCSAP) program. PACCSAP program follows on from work Geoscience Australia did for the Pacific Climate Change Science Program (PCCSP) looking at CMIP3 generation of climate models. The objective of this study is to improve scientific knowledge by examining past climate trends and variability to provide regional and national climate projections. This document presents results from current and future climate projections of severe wind hazard from tropical cyclones for the 15 PACCSAP partner countries describing the data and methods used for the analysis. The severe wind hazard was estimated for current (1981 to 2000) and future (2081 to 2100) climate scenarios. Tropical-cyclone like vortices from climate simulations conducted by CSIRO using six Coupled Model Intercomparison Project phase 5 (CMIP5) models (BCC-CSM1.1, NorESM1-M, CSIRO-Mk3.6, IPSL-CM5A, MRI-CGM3 and GFDL-ESM2M) as well as the International Best Track Archive for Climate Stewardship were used as input to the Geoscience Australia's Tropical Cyclone Risk Model to generate return period wind speeds for the 15 PACCSAP partner countries. The Tropical Cyclone Risk Model is a statistical-parametric model of tropical cyclone behaviour, enabling users to generate synthetic records of tropical cyclones representing many thousands of years of activity. The 500-year return period wind speed is analysed and discussed into more details in this report, since it is used as a benchmark for the design loads on residential buildings. Results indicate that there is not a consistent spatial trend for the changes in 500-year cyclonic wind speed return period when CMIP5 models are compared individually. BCC-CSM1M and IPSL-CM5A presented an increase in the annual TC frequency for East Timor, northern hemisphere and southern hemisphere. On the other hand, NorESM1M showed a decrease in the annual TC frequency for the same areas. The other three models showed a mixed of increase and decrease in their annual TC frequency. When CMIP5 models were analysed by partner county capitals for the 500-year cyclonic wind speed return period, IPSL-CM5A and GFDL-ESM2M models presented an increase in the cyclonic wind speed intensity for almost all capitals analysed with exception of Funafuti (GFDL-ESM2M), which presented a decrease of 0.7% and Honiara (IPSL-CM5A) with a decrease of 1.6%. The tropical cyclone annual frequency ensemble mean indicates an increase in the tropical cyclone frequency within all three regions considered in this study. When looking at individual capitals, a slight increase in the 500-year return period cyclonic wind speed ensemble mean varying between 0.8% (Port Vila) to 9.1% (Majuro) is noticed. A decline around 2.4% on average in the 500-year return period cyclonic wind speed ensemble mean is observed in Dili, Suva, Nukualofa and Ngerulmud. The ensemble spatial relative change did not show any particular consistency for the 500-year cyclonic wind speed. Areas where Marshall Islands and Niue are located presented an increase in the 500-year cyclonic wind speed while a decrease is observed in areas around South of Vanuatu, East of Solomon Islands, South of Fiji and some areas in Tonga. The information from the evaluation of severe wind hazard from tropical cyclones, together with other PACCSAP program outputs, will be used to build partner country capacity to effectively adapt and plan for the future and overcome challenges from climate change.
-
The Earthquake Scenario Selection is an interactive tool for querying, visualising and downloading earthquake scenarios. There are over 160 sites nationally with pre-generated scenarios available. These represent plausible future scenarios that can be used for earthquake risk management and planning (see https://www.ga.gov.au/about/projects/safety/nsha for more details).
-
The local magnitude ML 5.4 (MW 5.1) Moe earthquake on 19 June 2012 that occurred within the Australian stable continental region was the largest seismic event for the state of Victoria for more than 30 years. Seismic networks in the southeast Australian region yielded many high-quality recordings of the moderate-magnitude earthquake mainshock and its largest aftershock (ML 4.4; MW 4.3) at a hypocentral range of 10 to 480 km. The source and attenuation characteristics of the earthquake sequence are analyzed. Almost 15,000 felt reports were received following the main shock, which tripped a number of coal-fired power generators in the region, amounting to the loss of approximately 1955 megawatts of generation capacity. The attenuation of macroseismic intensities are shown to mimic the attenuation shape of Eastern North America (ENA) models, but require an inter-event bias to reduce predicted intensities. Further instrumental ground-motion recordings are compared to ground-motion models (GMMs) considered applicable for the southeastern Australian (SEA) region. Some GMMs developed for ENA and for SEA provide reasonable estimates of the recorded ground motions of spectral acceleration within epicentral distances of approximately 100 km. The mean weighted of the Next Generation Attenuation-East GMM suite, recently developed for stable ENA, performs relatively poorly for the 2012 Moe earthquake sequence, particularly for short-period accelerations.
-
Prior to the development of Australian-specific magnitude formulae, the 1935 magnitude corrections by Charles Richter – originally developed for southern California – was almost exclusively used to calculate earthquake magnitudes throughout Australia prior to the 1990s. Due to the difference in ground-motion attenuation between southern California and much of Australia, many historical earthquake magnitudes are likely to be overestimated in the Australian earthquake catalogue. A method has been developed that corrects local magnitudes using the difference between the original (inappropriate) magnitude corrections and the Australian-specific corrections at a distance determined by the nearest recording station likely to have recorded the earthquake. These corrections have reduced the rates of local magnitudes of 4.5 in the historical catalogue by about 30% since 1900, while the number of magnitude 5.0 earthquakes has reduced by about 60% in the same time period. The reduction in the number of moderate-to-large-magnitude earthquakes over the instrumental period yields long-term earthquake rates that are more consistent with present-day rates, since the development of Australian-specific magnitude formulae. The adjustment of historical earthquake magnitudes is important for seismic hazard assessments, which assume a Poisson distribution of earthquakes in space and time.