From 1 - 10 / 16
  • <p>Geoscience Australia has recently released its 2018 National Seismic Hazard Assessment (NSHA18). Results from the NSHA18 indicate significantly lower seismic hazard across almost all Australian localities at the 1/500 annual exceedance probability level relative to the factors adopted for the current Australian Standard AS1170.4–2007 (R2018). These new hazard estimates, coupled with larger kp factors, have challenged notions of seismic hazard in Australia in terms of the recurrence of damaging ground motions. As a consequence, the new hazard estimates have raised questions over the appropriateness of the prescribed probability level used in the AS1170.4 to determine appropriate seismic demands for the design of ordinary-use structures. Therefore, it is suggested that the ground-motion exceedance probability used in the current AS1170.4 be reviewed in light of the recent hazard assessment and the expected performance of modern buildings for rarer ground motions. <p>Whilst adjusting the AS1170.4 exceedance probability level would be a major departure from previous earthquake loading standards, it would bring it into line with other international building codes in similar tectonic environments. Additionally, it would offer opportunities to further modernise how seismic demands are considered in Australian building design. In particular, the authors highlight the following additional opportunities: 1) the use of uniform hazard spectra to replace and simplify the spectral shape factors, which do not deliver uniform hazard across all natural periods; 2) updated site amplification factors to ensure continuity with modern ground-motion models, and; 3) the potential to define design ground motions in terms of uniform collapse risk rather than uniform hazard. Estimation of seismic hazard at any location is an uncertain science. However, as our knowledge improves, our estimates of the hazard will converge on the actual – but unknowable – (time independent) hazard. It is therefore prudent to regularly update the estimates of the seismic demands in our building codes using the best available evidence-based methods and models.

  • Interactive Maps is a discovery and exploration view of Geoscience Australia's geospatial services. The following scientific and decision support themes have curated content comprised of maps and functions. Each map has queries and functions with linked access to OGC (Open Geospatial Consortium) web services and metadata. This system replaces MapConnect and AMSIS applications.

  • A compilation of short animations, describing the key processes involved in tsunami generation.

  • In 2012 Geoscience Australia produced a National Seismic Hazard Map (NSHM) of Australia using the Probabilistic Seismic Hazard Assessment (PSHA) methodology. The primary product of the project was single 500 year return period Peak Ground Acceleration (PGA) map GA record 2012/71. For this assessment the hazard has been calculated for 14 return periods (100 - 100,000 years) and 21 SA periods (0.0 - 5.0s), giving 294 hazard layers (maps) for 48000 sites across Australia. We show five of the possible 294 hazard maps and 34 of the tens of thousands of possible hazard curves and spectra. These were selected to cover the main types of additional maps that have been requested since the NSHM was released and to cover a reasonable range of return periods, SA periods and locations. In this record, the probability factor (Kp) curve given in AS1170.4 is also compared to the curves calculated for the eight capital cities. Finally, the hazard spectra for the capital cities and some selected locations is compared to the spectra for site class Be given in AS1170.4.

  • This document presents a new set of earthquake hazard maps for consideration in the next revision of the earthquake loading code AS1170.4 "Structural design actions: Part 4 Earthquake actions in Australia". The earthquake catalogue used here includes events up until 2011. It is a combined version of several catalogues provided by external agencies. This represents the most complete catalogue of earthquakes compiled for Australia. The catalogue is more consistent through conversion of various magnitude measurements into a 'pseudo ML' scale. A systematic logic is used to select preferred magnitude types. Aftershocks, foreshocks and mine blasts have been identified and the declustered catalogue used here is cleaner than any previous Australian catalogue. Earthquake source zones applied in the hazard map use a unique combination of three different layers, which capture seismic characteristics at sub-national, regional and high-activity point scales. The map is one of the first in the world to apply a semi-quantitative measure of Mmax for majority of the source zones in the map. We apply recently developed ground motion prediction equations based on modern methods and data. These equations were used to calculate the ground motion at a range of response spectral accelerations, rather than just calculating the hazard for peak ground acceleration (PGA). A suite of maps is calculated using GA's Earthquake Risk Model (EQRM). The EQRM is open-source, allowing the results to be tested or modified independently. The final 2012 Australian earthquake hazard maps for a range of return periods and response spectral periods are presented herein.

  • This document is intended to provide a record of the participants, program, and discussions held at the Fire Weather and Risk Workshop, held at Peppers Craigieburn in Bowral, from 1st -4th September 2011. The workshop was attended by 77 delegates and was sponsored by the ACT Emergency Services Agency, Geoscience Australia, the Bureau of Meteorology, and the Federal Attorney Generals Department. These proceedings include the: - workshop program - executive summary by the workshop organizers - presentation abstracts (optional) - summaries of presentations and discussions (compiled at the workshop by the session chairs and scribes) - survey of participants- expectations of the workshop (received prior to the workshop) - results of a post-workshop evaluation - list of participants. This document also includes an invited journalistic-styled article by science journalist, Nick Goldie (Senior Deputy Captain, Colinton Rural Fire Brigade, NSW RFS) which provided an independent view on the activities that occurred over the three days.

  • On 23 March 2012, at 09:25 UTC, an Mw 5.4 earthquake occurred in the eastern Musgrave Ranges of north-central South Australia, near the community of Ernabella (Pukatja). Several small communities in this remote part of central Australia reported the tremor, but there were no reports of injury or significant damage. This was the largest earthquake recorded on mainland Australia in the past 15 years and resulted in the formation of a 1.6 km long surface deformation zone that included reverse-fault scarps with a maximum vertical displacement of more than 0.5 m, extensive ground cracking, and numerous rock falls. The earthquake occurred in non-extended stable continental region (SCR) cratonic crust, more than 1900 km from the nearest plate boundary. Surface deformation from the Ernabella earthquake provides additional constraint on relations of surface-rupture length to earthquake magnitude. Such relations aid in interpreting Australia’s rich record of prehistoric seismicity and contribute to improved estimates of SCR seismic hazard worldwide. Based upon an analysis of new and reinterpretation of existing surface-rupture length data, faults in non-extended stable cratonic Australia appear to produce longer surface ruptures (for earthquakes larger than Mw ∼ 6:5) than rupture lengths estimated using existing moment-to rupture length scaling relations. The implication is that the estimated maximum, or characteristic, magnitude of paleoearthquakes in such settings may be overestimated where the estimate is based only on the length of the prehistoric fault scarp.

  • Geoscience Australia has recently released the 2012 version of the National Earthquake Hazard Map of Australia. Among other applications, the map is a key component of Australia's earthquake loading code AS1170.4. In this presentation we provide an overview of the new maps and how they were developed. The maps take advantage of significant improvements in both the data sets and models used for earthquake hazard assessment in Australia since the map currently in AS1170.4-2007 was produced. These include: - An additional 20+ years of earthquake observations - Improved methods of declustering earthquake catalogues and calculating earthquake recurrence - Ground motion prediction equations (i.e. attenuation equations) based on observed strong motions instead of intensity - Revised earthquake source zones implementing a multi-layer model - Improved maximum magnitude earthquake estimates based on palaeoseismology - The use of open source software for undertaking probabilistic seismic hazard assessment, which promotes testability and repeatability Hazard curves are presented for a range of response spectral acceleration (RSA) periods between 0.0 and 1.0 s and for return periods between a few hundred to a few thousand years. These curves and maps are compared with the current earthquake hazard values in AS1170.4-2007. For a return period of 500 years, the hazard values in the 0.0 s RSA period map are generally lower or the same as the hazard factor values in the AS1170.4 map. This is also true for most of the other RSA periods up to 1.0s for the cities in Australia with Darwin being the main exception. By contrast, the hazard for return periods above 1000 years is higher than the values derived from the tables in AS1170.4 for all RSA periods.

  • A short film about a scientific project aimed at enhancing risk analysis capacities for flood, severe wind from tropical cyclones and earthquake in the Greater Metropolitan Manila Area. Manila is one of the world's megacities, and the Greater Metro Manila Area is prone to natural disasters. These events may have devastating consequences for individuals, communities, buildings, infrastructure and economic development. Understanding the risk is essential for implementing Disaster Risk Reduction programs. In partnership with AusAID, Geoscience Australia is providing technical leadership for risk analysis projects in the Asia-Pacific Region. In the Philippines, Geoscience Australia is engaging with Government of the Philippines agencies to deliver the "Enhancing Risk Analysis Capacities for Flood, Tropical Cyclone Severe Wind and Earthquake in the Greater Metro Manila Area" Project.

  • The use of Interferometric Synthetic Aperture Radar (InSAR) to monitor volcano hazards by detecting ground deformation has been demonstrated in numerous cases around the world. This report presents an investigation of the feasibility of using InSAR as a broad scale volcano-monitoring tool in Papua New Guinea (PNG). This type of ongoing broad-scale monitoring would be a significant leap forward compared to the majority of past applications of InSAR for volcano monitoring, which have been sporadic and often conducted in hindsight. A major focus of this study was the development of open-source InSAR analysis software which makes it easier to implement in developing countries where resources may be limited. The environmental conditions of PNG, such as steep topography, dense vegetation and the moist, turbulent atmosphere pose significant challenges to volcano monitoring using InSAR. On the other hand, the remoteness of many of the volcanoes and the limited geophysical resources currently employed to monitor them, makes a broad-scale InSAR monitoring system an attractive proposition. The viability of InSAR as an ongoing tool for broad-scale volcano monitoring in PNG is constrained by the future availability of L-band Synthetic Aperture Radar (SAR) satellite imagery. The ALOS-2 mission should meet the data requirements of a broad-scale volcano monitoring programme. However, the present cost of ALOS data is prohibitive to ongoing monitoring, given the large volume of data required. The planned ALOS-2 mission will acquire SAR data with even higher temporal resolution, but this will be of little use to InSAR monitoring unless it is available at a cost conducive to regular access. At present, the greatest single barrier to a broad-scale InSAR monitoring system is the prohibitive cost of obtaining the required SAR imagery. To improve the accessibility of InSAR processing software to those in developing countries, the InSAR processing workflow that has been developed in this study is open source, being based on the GMTSAR package. In addition the interface has been simplified and a greater level of automation has been implemented to reduce the training required to become operational. The system has been designed to deal with the large volume of data processing required in a broad-scale volcano monitoring operation by parallelizing the most computationally intensive parts of the workflow. A case study of the Rabaul caldera demonstrates that L-band SAR interferometry can overcome many of the challenges of applying InSAR in PNG. However, continued development is required to enable time-series InSAR analysis. This would help to resolve the nonlinear nature of volcano deformation events and reduce the impact of spurious atmospheric delay signals. Commercial software is available to meet this requirement but the development of an open source alternative would be desirable to make the platform inclusive of developing countries.