geohazards
Type of resources
Keywords
Publication year
Scale
Topics
-
In early 2011 a series of natural disasters impacted a large number of communities in Queensland. The flooding in the Brisbane region and the severe wind and storm surge experienced in the tully region caused widespread damage to infrastructure and disrupted both households and businesses. The full recovery costs over the next few years are expected to be considerable and will be a major drain on the resources of all levels of government and the insurance industry.
-
On 23 March 2012, at 09:25 GMT, a MW 5.4 earthquake occurred in the eastern Musgrave Ranges region of north-central South Australia, near the community of Ernabella (Pukatja). Several small communities in this remote part of central Australia reported the tremor, but there were no reports of injury or significant damage. This was the largest earthquake to be recorded on mainland Australia for the past 15 years and resulted in the formation of a 1.6 km-long surface deformation zone comprising reverse fault scarps with a maximum vertical displacement of over 0.5 m, extensive ground cracking, and numerous rock falls. The maximum ground-shaking is estimated to have been in the order of MMI VI. The earthquake occurred in non-extended Stable Continental Region (SCR) cratonic crust, over 1900 km from the nearest plate boundary. Fewer than fifteen historic earthquakes worldwide are documented to have produced co-seismic surface deformation (i.e. faulting or folding) in the SCR setting. The record of surface deformation relating to the Ernabella earthquake therefore provides an important constraint on models relating surface rupture length to earthquake magnitude. Such models may be employed to better interpret Australia's rich prehistoric record of seismicity, and contribute to improved estimates of seismic hazard.
-
We report four lessons from experience gained in applying the multiple-mode spatially-averaged coherency method (MMSPAC) at 25 sites in Newcastle (NSW) for the purpose of establishing shear-wave velocity profiles as part of an earthquake hazard study. The MMSPAC technique is logistically viable for use in urban and suburban areas, both on grass sports fields and parks, and on footpaths and roads. A set of seven earthquake-type recording systems and team of three personnel is sufficient to survey three sites per day. The uncertainties of local noise sources from adjacent road traffic or from service pipes contribute to loss of low-frequency SPAC data in a way which is difficult to predict in survey design. Coherencies between individual pairs of sensors should be studied as a quality-control measure with a view to excluding noise-affected sensors prior to interpretation; useful data can still be obtained at a site where one sensor is excluded. The combined use of both SPAC data and HVSR data in inversion and interpretation is a requirement in order to make effective use of low frequency data (typically 0.5 to 2 Hz at these sites) and thus resolve shear-wave velocities in basement rock below 20 to 50 m of soft transported sediments.
-
The Mount Lofty and Flinders Ranges of South Australia are bound on the east and the west by reverse faults that thrust Proterozoic and/or Cambrian basement rocks over Quaternary sediment. These faults range from a few tens to almost one hundred kilometres in length and tend to be spaced significantly less than a fault length apart. In the few instances where the thickness of overthrust sediment can be estimated, total neotectonic throws are in the order of 100-200 m. Slip rates on individual faults range from 0.02-0.17 mm/a, with one unconfirmed estimate as high as 0.7 mm/a. Taking into account the intermittent nature of faulting in Australia, it has been suggested that 30-50% of the present-day elevation of the Flinders and Mount Lofty Ranges relative to adjacent piedmonts has developed in the last 5 Ma. Uplifted last interglacial shorelines (ca. 120 ka) along the southern coastline of the Mount Lofty Ranges indicate that deformation is ongoing. Palaeoseismological investigations provide important insight into the characteristics of the large earthquakes responsible for deformation events. Single event displacements of 1.8 m have been measured on the Williamstown-Meadows Fault and the Alma Fault, with the former relating to a surface rupture length of a least 25 km. Further to the south in Adelaide's eastern suburbs, a 5 km section of scarp, potentially relating to a single event slip on the Eden-Burnside Fault, is preserved in ca. 120 ka sediments. Where the Eden-Burnside Fault meets the coast at Port Stanvac 20 kilometres south, the last interglacial shoreline is uplifted by 2 m relative to its expected position. At Normanville, on the uplifted side of the Willunga Fault, the last interglacial shoreline is over 10 m above its expected position, implying perhaps five or more surface rupturing events in the last ca. 120 ka on this >50 km long fault. On the eastern range front, a very large single event displacement of 7 m is inferred on the 54 km long Milendella Fault, and the 79 km long Encounter Fault displaces last interglacial shorelines by up to 11 m. There is abundant evidence for large surface-breaking earthquakes on many faults within 100 km of the Adelaide CBD. Slip rates are low by plate margin standards, implying a low rate of recurrence for M7+ events on individual faults (perhaps 10,000 years or more). However, a proximal moderate-sized event or even a large event at distance has the potential to cause significant damage to Adelaide, particularly given its construction types and local site conditions.
-
Geoscience Australia has recently released the 2012 version of the National Earthquake Hazard Map of Australia. Among other applications, the map is a key component of Australia's earthquake loading code AS1170.4. In this presentation we will provide an overview of the new maps and how they were put together. The new maps take advantage of the significant improvements in both the data sets and models used for earthquake hazard assessment in Australia since the current map in AS1170.4 was produced. These include: - An additional 20+ years of earthquake observations - Improved methods of declustering earthquake catalogues and calculating earthquake recurrence - Ground motion prediction equations (i.e. attenuation equations) based on observed strong motions instead of intensity - Revised earthquake source zones - Improved maximum magnitude earthquake estimates based on palaeoseismology - The use of open source software for undertaking probabilistic seismic hazard assessment which promotes testability and repeatability Hazard maps will be presented for a range of response spectral acceleration (RSA) periods between 0.0 and 1.0s and for multiple return periods between a few hundred to a few thousand years. These maps will be compared with the current earthquake hazard map in AS1170.4. For a return period of 500 years, the hazard values in the 0.0s RSA period map were generally lower than the hazard values in the current AS1170.4 map. By contrast the 0.2s RSA period hazard values were generally higher.
-
This paper describes the methods used to define earthquake source zones and calculate their recurrence parameters (a, b, Mmax). These values, along with the ground motion relations, effectively define the final hazard map. Definition of source zones is a highly subjective process, relying on seismology and geology to provide some quantitative guidance. Similarly the determination of Mmax is often subjective. Whilst the calculation of a and b is quantitative, the assumptions inherent in the available methods need to be considered when choosing the most appropriate one. For the new map we have maximised quantitative input into the definition of zones and their parameters. The temporal and spatial Poisson statistical properties of Australia's seismicity, along with models of intra-plate seismicity based on results from neotectonic, geodetic and computer modelling studies of stable continental crust, suggest a multi-layer source zonation model is required to account for the seismicity. Accordingly we propose a three layer model consisting of three large background seismicity zones covering 100% of the continent, 25 regional scale source zones covering ~50% of the continent, and 44 hotspot zones covering 2% of the continent. A new algorithm was developed to calculate a and b. This algorithm was designed to minimise the problems with both the maximum likelihood method (which is sensitive to the effects of varying magnitude completeness at small magnitudes) and the least squares regression method (which is sensitive to the presence of outlier large magnitude earthquakes). This enabled fully automated calculation of a and b parameters for all sources zones. The assignment of Mmax for the zones was based on the results of a statistical analysis of neotectonic fault scarps.
-
This paper describes the methods used to define earthquake source zones and calculate their recurrence parameters (a, b, Mmax). These values, along with the ground motion relations, effectively define the final hazard map. Definition of source zones is a highly subjective process, relying on seismology and geology to provide some quantitative guidance. Similarly the determination of Mmax is often subjective. Whilst the calculation of a and b is quantitative, the assumptions inherent in the available methods need to be considered when choosing the most appropriate one. For the new map we have maximised quantitative input into the definition of zones and their parameters. The temporal and spatial Poisson statistical properties of Australia's seismicity, along with models of intra-plate seismicity based on results from neotectonic, geodetic and computer modelling studies of stable continental crust, suggest a multi-layer source zonation model is required to account for the seismicity. Accordingly we propose a three layer model consisting of three large background seismicity zones covering 100% of the continent, 25 regional scale source zones covering ~50% of the continent, and 44 hotspot zones covering 2% of the continent. A new algorithm was developed to calculate a and b. This algorithm was designed to minimise the problems with both the maximum likelihood method (which is sensitive to the effects of varying magnitude completeness at small magnitudes) and the least squares regression method (which is sensitive to the presence of outlier large magnitude earthquakes). This enabled fully automated calculation of a and b parameters for all sources zones. The assignment of Mmax for the zones was based on the results of a statistical analysis of neotectonic fault scarps.
-
The tectonic origin, paleoearthquake histories and slip rates of six normal faults (referred to here as the Rahotu, Oaonui, Kina, Kiri, Ihaia and Pihama faults) have been examined for up to ~26 kyr within the Taranaki Rift, New Zealand. A minimum of 13 ground-surface rupturing paleoearthquakes have been recognised on four of the faults using analysis of displaced late Quaternary stratigraphy and landforms. These data, in combination with 21 new radiocarbon dates, constrain the timing, slip and magnitude of each earthquake. The faults have low throw rates (~0.1-0.8 mm/yr) and appear to be buried near the Mt Taranaki volcanic cone. Recurrence intervals between earthquakes on individual faults typically range from 3-10 kyr (average ~ 6 kyr), with slip/earthquake ranging from ~0.3-1.5 m (average ~0.7 m). Recurrence intervals and slip/earthquake typically vary by up to a factor of three on individual faults, with only the Oaonui Fault displaying near-characteristic slip (of about 0.5 m) during successive earthquakes. The timing and slip of earthquakes on individual faults appear to have been interdependent, with each event possibly relieving stress and decreasing the likelihood of additional earthquakes across the system. Earthquake magnitudes are estimated to be M 6.5-6.7. The dating resolution of paleoearthquakes is generally ±1-2 kyr and is presently too imprecise to test the temporal relations between seismic events and either volcanic eruptions or lahars formed by debris avalanches during cone collapse. It is unlikely, however, that formation of the ~7.8 kyr Opua Formation lahar was triggered by a large earthquake on the Rahotu, Oaonui or Kina faults which, of the faults studied, are farthest from the Mt Taranaki volcanic cone.
-
The Attorney General's Department (AGD) has supported Geoscience Australia (GA) to develop inundation models for selected Northern Territory communities with the view of building the tsunami planning and preparation capacity of the Northern Territory Government. The communities chosen were Darwin, Palmerston, Wagait Beach and Dundee Beach. These locations were selected in collaboration with the Northern Territory Emergency Service (NTES) and Department of Natural Resources, Environment, The Arts and Sport (NRETAS) and the Australian Government based on a combination of the offshore Probabilistic Tsunami Hazard Assessment of Australia (PTHA)[1], the availability of suitable elevation data and the location of low lying communities. Three tsunamigenic events were selected for modelling from the scenario database that was calculated as part of the national offshore probabilistic tsunami hazard assessment (PTHA) [1]. The events selected are hypothetical and are based on the current understanding of the tsunami hazard. Only earthquake sources are considered as these account for the majority of tsunami. The suite of events includes three 'worst-case' or 1 in 10 000 year hazard events as well as more frequent events. Source zones considered are the Timor Trough, Flores-Wetar Thrust Fault and the Java Trench as these regions make the highest contribution to the offshore tsunami hazard for Darwin.
-
The contemporary crustal stress regime in south-eastern Australia can be traced back to the terminal Miocene. Increased coupling of the Australian and Pacific Plate boundary at this time resulted in regional-scale tilting, local uplift and erosion, and in the formation of unconformities in southern Australian basins. In the onshore Gippsland Basin the unconformity surface is overlain by an extensive sheet of fluvial sediment known as the Haunted Hill Formation (HHF). Open folds and flexures developed within the HHF over blind reverse and reverse oblique faults provide a record of deformation spanning much of the neotectonic period. The predominance of flexures and folds rather than discrete faulting at the surface complicates the assessment of slip rates over the last few seismic cycles. However, ages from an undeformed fill terrace bordering the Morwell River and crossing the Morwell Monocline suggest that it has been a minimum of 70 ka since the last deformation event on at least this structure. Stream profiles crossing the Snake Ridge, Yallourn and Rosedale Monoclines similarly reveal no evidence for recent tectonic displacement. Cosmogenic radionuclide (10Be and 26Al) burial ages of siliceous sediments sampled from tectonically uplifted HHF on the Yallourn, Morwell and Snake Ridge Monoclines provide constraint on the long-term evolution of these structures. Combined with stratigraphic and tectonic records from the offshore Gippsland Basin, these data provide a basis for informed seismic hazard assessment.